Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 17B65 ( Infinite-dimensional Lie (super)algebras [See also 22E65] )

  Expand all        Collapse all Results 1 - 9 of 9

1. CMB Online first

Fulp, Ronald Owen
Correction to "Infinite Dimensional DeWitt Supergroups and Their Bodies"
The Theorem below is a correction to Theorem 3.5 in the article entitled " Infinite Dimensional DeWitt Supergroups and Their Bodies" published in Canad. Math. Bull. Vol. 57 (2) 2014 pp. 283-288. Only part (iii) of that Theorem requires correction. The proof of Theorem 3.5 in the original article failed to separate the proof of (ii) from the proof of (iii). The proof of (ii) is complete once it is established that $ad_a$ is quasi-nilpotent for each $a$ since it immediately follows that $K$ is quasi-nilpotent. The proof of (iii) is not complete in the original article. The revision appears as the proof of (iii) of the revised Theorem below.

Keywords:super groups, body of super groups, Banach Lie groups
Categories:58B25, 17B65, 81R10, 57P99

2. CMB 2012 (vol 56 pp. 606)

Mazorchuk, Volodymyr; Zhao, Kaiming
Characterization of Simple Highest Weight Modules
We prove that for simple complex finite dimensional Lie algebras, affine Kac-Moody Lie algebras, the Virasoro algebra and the Heisenberg-Virasoro algebra, simple highest weight modules are characterized by the property that all positive root elements act on these modules locally nilpotently. We also show that this is not the case for higher rank Virasoro and for Heisenberg algebras.

Keywords:Lie algebra, highest weight module, triangular decomposition, locally nilpotent action
Categories:17B20, 17B65, 17B66, 17B68

3. CMB 2011 (vol 54 pp. 519)

Neeb, K. H.; Penkov, I.
Erratum: Cartan Subalgebras of $\mathrm{gl}_\infty$
We correct an oversight in the the paper Cartan Subalgebras of $\mathrm{gl}_\infty$, Canad. Math. Bull. 46(2003), no. 4, 597-616. doi: 10.4153/CMB-2003-056-1

Categories:17B65, 17B20

4. CMB 2008 (vol 51 pp. 298)

Tocón, Maribel
The Kostrikin Radical and the Invariance of the Core of Reduced Extended Affine Lie Algebras
In this paper we prove that the Kostrikin radical of an extended affine Lie algebra of reduced type coincides with the center of its core, and use this characterization to get a type-free description of the core of such algebras. As a consequence we get that the core of an extended affine Lie algebra of reduced type is invariant under the automorphisms of the algebra.

Keywords:extended affine Lie algebra, Lie torus, core, Kostrikin radical
Categories:17B05, 17B65

5. CMB 2003 (vol 46 pp. 597)

Neeb, Karl-Hermann; Penkov, Ivan
Cartan Subalgebras of $\mathfrak{gl}_\infty$
Let $V$ be a vector space over a field $\mathbb{K}$ of characteristic zero and $V_*$ be a space of linear functionals on $V$ which separate the points of $V$. We consider $V\otimes V_*$ as a Lie algebra of finite rank operators on $V$, and set $\mathfrak{gl} (V,V_*) := V\otimes V_*$. We define a Cartan subalgebra of $\mathfrak{gl} (V,V_*)$ as the centralizer of a maximal subalgebra every element of which is semisimple, and then give the following description of all Cartan subalgebras of $\mathfrak{gl} (V,V_*)$ under the assumption that $\mathbb{K}$ is algebraically closed. A subalgebra of $\mathfrak{gl} (V,V_*)$ is a Cartan subalgebra if and only if it equals $\bigoplus_j \bigl( V_j \otimes (V_j)_* \bigr) \oplus (V^0 \otimes V_*^0)$ for some one-dimensional subspaces $V_j \subseteq V$ and $(V_j)_* \subseteq V_*$ with $(V_i)_* (V_j) = \delta_{ij} \mathbb{K}$ and such that the spaces $V_*^0 = \bigcap_j (V_j)^\bot \subseteq V_*$ and $V^0 = \bigcap_j \bigl( (V_j)_* \bigr)^\bot \subseteq V$ satisfy $V_*^0 (V^0) = \{0\}$. We then discuss explicit constructions of subspaces $V_j$ and $(V_j)_*$ as above. Our second main result claims that a Cartan subalgebra of $\mathfrak{gl} (V,V_*)$ can be described alternatively as a locally nilpotent self-normalizing subalgebra whose adjoint representation is locally finite, or as a subalgebra $\mathfrak{h}$ which coincides with the maximal locally nilpotent $\mathfrak{h}$-submodule of $\mathfrak{gl} (V,V_*)$, and such that the adjoint representation of $\mathfrak{h}$ is locally finite.

Categories:17B65, 17B20

6. CMB 2003 (vol 46 pp. 529)

Billig, Yuly
Representations of the Twisted Heisenberg--Virasoro Algebra at Level Zero
We describe the structure of the irreducible highest weight modules for the twisted Heisenberg--Virasoro Lie algebra at level zero. We prove that either a Verma module is irreducible or its maximal submodule is cyclic.

Categories:17B68, 17B65

7. CMB 2002 (vol 45 pp. 567)

De Sole, Alberto; Kac, Victor G.
Subalgebras of $\gc_N$ and Jacobi Polynomials
We classify the subalgebras of the general Lie conformal algebra $\gc_N$ that act irreducibly on $\mathbb{C} [\partial]^N$ and that are normalized by the sl$_2$-part of a Virasoro element. The problem turns out to be closely related to classical Jacobi polynomials $P_n^{(-\sigma,\sigma)}$, $\sigma \in \mathbb{C}$. The connection goes both ways---we use in our classification some classical properties of Jacobi polynomials, and we derive from the theory of conformal algebras some apparently new properties of Jacobi polynomials.

Categories:17B65, 17B68, 17B69, 33C45

8. CMB 2002 (vol 45 pp. 672)

Rao, S. Eswara; Batra, Punita
A New Class of Representations of EALA Coordinated by Quantum Tori in Two Variables
We study the representations of extended affine Lie algebras $s\ell_{\ell+1} (\mathbb{C}_q)$ where $q$ is $N$-th primitive root of unity ($\mathbb{C}_q$ is the quantum torus in two variables). We first prove that $\bigoplus s\ell_{\ell+1} (\mathbb{C})$ for a suitable number of copies is a quotient of $s\ell_{\ell+1} (\mathbb{C}_q)$. Thus any finite dimensional irreducible module for $\bigoplus s\ell_{\ell+1} (\mathbb{C})$ lifts to a representation of $s\ell_{\ell+1} (\mathbb{C}_q)$. Conversely, we prove that any finite dimensional irreducible module for $s\ell_{\ell+1} (\mathbb{C}_q)$ comes from above. We then construct modules for the extended affine Lie algebras $s\ell_{\ell+1} (\mathbb{C}_q) \oplus \mathbb{C} d_1 \oplus \mathbb{C} d_2$ which is integrable and has finite dimensional weight spaces.

Categories:17B65, 17B66, 17B68

9. CMB 2002 (vol 45 pp. 623)

Gao, Yun
Fermionic and Bosonic Representations of the Extended Affine Lie Algebra $\widetilde{\mathfrak{gl}_N} (\mathbb{C}_q)$
We construct a class of fermions (or bosons) by using a Clifford (or Weyl) algebra to get two families of irreducible representations for the extended affine Lie algebra $\widetilde{\mathfrak{gl}_N (\mathbb{C}_q)}$ of level $(1,0)$ (or $(-1,0)$).

Categories:17B65, 17B67

© Canadian Mathematical Society, 2014 :