CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 17 ( Nonassociative rings and algebras )

  Expand all        Collapse all Results 1 - 25 of 39

1. CMB Online first

Fulp, Ronald Owen
Correction to "Infinite Dimensional DeWitt Supergroups and Their Bodies"
The Theorem below is a correction to Theorem 3.5 in the article entitled " Infinite Dimensional DeWitt Supergroups and Their Bodies" published in Canad. Math. Bull. Vol. 57 (2) 2014 pp. 283-288. Only part (iii) of that Theorem requires correction. The proof of Theorem 3.5 in the original article failed to separate the proof of (ii) from the proof of (iii). The proof of (ii) is complete once it is established that $ad_a$ is quasi-nilpotent for each $a$ since it immediately follows that $K$ is quasi-nilpotent. The proof of (iii) is not complete in the original article. The revision appears as the proof of (iii) of the revised Theorem below.

Keywords:super groups, body of super groups, Banach Lie groups
Categories:58B25, 17B65, 81R10, 57P99

2. CMB Online first

Cagliero, Leandro; Szechtman, Fernando
On the theorem of the primitive element with applications to the representation theory of associative and Lie algebras
We describe of all finite dimensional uniserial representations of a commutative associative (resp. abelian Lie) algebra over a perfect (resp. sufficiently large perfect) field. In the Lie case the size of the field depends on the answer to following question, considered and solved in this paper. Let $K/F$ be a finite separable field extension and let $x,y\in K$. When is $F[x,y]=F[\alpha x+\beta y]$ for some non-zero elements $\alpha,\beta\in F$?

Keywords:uniserial module, Lie algebra, associative algebra, primitive element
Categories:17B10, 13C05, 12F10, 12E20

3. CMB 2012 (vol 56 pp. 606)

Mazorchuk, Volodymyr; Zhao, Kaiming
Characterization of Simple Highest Weight Modules
We prove that for simple complex finite dimensional Lie algebras, affine Kac-Moody Lie algebras, the Virasoro algebra and the Heisenberg-Virasoro algebra, simple highest weight modules are characterized by the property that all positive root elements act on these modules locally nilpotently. We also show that this is not the case for higher rank Virasoro and for Heisenberg algebras.

Keywords:Lie algebra, highest weight module, triangular decomposition, locally nilpotent action
Categories:17B20, 17B65, 17B66, 17B68

4. CMB 2011 (vol 55 pp. 870)

Wang, Hui; Deng, Shaoqiang
Left Invariant Einstein-Randers Metrics on Compact Lie Groups
In this paper we study left invariant Einstein-Randers metrics on compact Lie groups. First, we give a method to construct left invariant non-Riemannian Einstein-Randers metrics on a compact Lie group, using the Zermelo navigation data. Then we prove that this gives a complete classification of left invariant Einstein-Randers metrics on compact simple Lie groups with the underlying Riemannian metric naturally reductive. Further, we completely determine the identity component of the group of isometries for this type of metrics on simple groups. Finally, we study some geometric properties of such metrics. In particular, we give the formulae of geodesics and flag curvature of such metrics.

Keywords:Einstein-Randers metric, compact Lie groups, geodesic, flag curvature
Categories:17B20, 22E46, 53C12

5. CMB 2011 (vol 55 pp. 579)

Ndogmo, J. C.
Casimir Operators and Nilpotent Radicals
It is shown that a Lie algebra having a nilpotent radical has a fundamental set of invariants consisting of Casimir operators. A different proof is given in the well known special case of an abelian radical. A result relating the number of invariants to the dimension of the Cartan subalgebra is also established.

Keywords:nilpotent radical, Casimir operators, algebraic Lie algebras, Cartan subalgebras, number of invariants
Categories:16W25, 17B45, 16S30

6. CMB 2011 (vol 55 pp. 351)

MacDougall, J. A.; Sweet, L. G.
Rational Homogeneous Algebras
An algebra $A$ is homogeneous if the automorphism group of $A$ acts transitively on the one-dimensional subspaces of $A$. The existence of homogeneous algebras depends critically on the choice of the scalar field. We examine the case where the scalar field is the rationals. We prove that if $A$ is a rational homogeneous algebra with $\operatorname{dim} A>1$, then $A^{2}=0$.

Keywords:non-associative algebra, homogeneous, automorphism
Categories:17D99, 17A36

7. CMB 2011 (vol 55 pp. 67)

Cummins, C. J.; Duncan, J. F.
An $E_8$ Correspondence for Multiplicative Eta-Products
We describe an $E_8$ correspondence for the multiplicative eta-products of weight at least $4$.

Keywords:We describe an E8 correspondence for the multiplicative eta-products of weight at least 4.
Categories:11F20, 11F12, 17B60

8. CMB 2011 (vol 54 pp. 442)

García, Esther; Lozano, Miguel Gómez; Neher, Erhard
Nondegeneracy for Lie Triple Systems and Kantor Pairs
We study the transfer of nondegeneracy between Lie triple systems and their standard Lie algebra envelopes as well as between Kantor pairs, their associated Lie triple systems, and their Lie algebra envelopes. We also show that simple Kantor pairs and Lie triple systems in characteristic $0$ are nondegenerate.

Keywords:Kantor pairs, Lie triple systems, Lie algebras
Categories:17A40, 17B60, 17B99

9. CMB 2011 (vol 54 pp. 297)

Johnson, Marianne; Stöhr, Ralph
Lie Powers and Pseudo-Idempotents
We give a new factorisation of the classical Dynkin operator, an element of the integral group ring of the symmetric group that facilitates projections of tensor powers onto Lie powers. As an application we show that the iterated Lie power $L_2(L_n)$ is a module direct summand of the Lie power $L_{2n}$ whenever the characteristic of the ground field does not divide $n$. An explicit projection of the latter onto the former is exhibited in this case.

Categories:17B01, 20C30

10. CMB 2011 (vol 54 pp. 519)

Neeb, K. H.; Penkov, I.
Erratum: Cartan Subalgebras of $\mathrm{gl}_\infty$
We correct an oversight in the the paper Cartan Subalgebras of $\mathrm{gl}_\infty$, Canad. Math. Bull. 46(2003), no. 4, 597-616. doi: 10.4153/CMB-2003-056-1

Categories:17B65, 17B20

11. CMB 2010 (vol 54 pp. 44)

Cheung, Wai-Shun; Tam, Tin-Yau
Star-Shapedness and $K$-Orbits in Complex Semisimple Lie Algebras
Given a complex semisimple Lie algebra $\mathfrak{g}=\mathfrak{k}+i\mathfrak{k}$ ($\mathfrak{k}$ is a compact real form of $\mathfrak{g}$), let $\pi\colon\mathfrak{g}\to \mathfrak{h}$ be the orthogonal projection (with respect to the Killing form) onto the Cartan subalgebra $\mathfrak{h}:=\mathfrak{t}+i\mathfrak{t}$, where $\mathfrak{t}$ is a maximal abelian subalgebra of $\mathfrak{k}$. Given $x\in \mathfrak{g}$, we consider $\pi(\mathop{\textrm{Ad}}(K) x)$, where $K$ is the analytic subgroup $G$ corresponding to $\mathfrak{k}$, and show that it is star-shaped. The result extends a result of Tsing. We also consider the generalized numerical range $f(\mathop{\textrm{Ad}}(K)x)$, where $f$ is a linear functional on $\mathfrak{g}$. We establish the star-shapedness of $f(\mathop{\textrm{Ad}}(K)x)$ for simple Lie algebras of type $B$.

Categories:22E10, 17B20

12. CMB 2010 (vol 53 pp. 425)

Chapoton, Frédéric
Free Pre-Lie Algebras are Free as Lie Algebras
We prove that the $\mathfrak{S}$-module $\operatorname{PreLie}$ is a free Lie algebra in the category of $\mathfrak{S}$-modules and can therefore be written as the composition of the $\mathfrak{S}$-module $\operatorname{Lie}$ with a new $\mathfrak{S}$-module $X$. This implies that free pre-Lie algebras in the category of vector spaces, when considered as Lie algebras, are free on generators that can be described using $X$. Furthermore, we define a natural filtration on the $\mathfrak{S}$-module $X$. We also obtain a relationship between $X$ and the $\mathfrak{S}$-module coming from the anticyclic structure of the $\operatorname{PreLie}$ operad.

Categories:18D50, 17B01, 18G40, 05C05

13. CMB 2009 (vol 52 pp. 245)

Goodaire, Edgar G.; Milies, César Polcino
Involutions of RA Loops
Let $L$ be an RA loop, that is, a loop whose loop ring over any coefficient ring $R$ is an alternative, but not associative, ring. Let $\ell\mapsto\ell^\theta$ denote an involution on $L$ and extend it linearly to the loop ring $RL$. An element $\alpha\in RL$ is \emph{symmetric} if $\alpha^\theta=\alpha$ and \emph{skew-symmetric} if $\alpha^\theta=-\alpha$. In this paper, we show that there exists an involution making the symmetric elements of $RL$ commute if and only if the characteristic of $R$ is $2$ or $\theta$ is the canonical involution on $L$, and an involution making the skew-symmetric elements of $RL$ commute if and only if the characteristic of $R$ is $2$ or $4$.

Categories:20N05, 17D05

14. CMB 2008 (vol 51 pp. 298)

Tocón, Maribel
The Kostrikin Radical and the Invariance of the Core of Reduced Extended Affine Lie Algebras
In this paper we prove that the Kostrikin radical of an extended affine Lie algebra of reduced type coincides with the center of its core, and use this characterization to get a type-free description of the core of such algebras. As a consequence we get that the core of an extended affine Lie algebra of reduced type is invariant under the automorphisms of the algebra.

Keywords:extended affine Lie algebra, Lie torus, core, Kostrikin radical
Categories:17B05, 17B65

15. CMB 2008 (vol 51 pp. 291)

Spinelli, Ernesto
Group Algebras with Minimal Strong Lie Derived Length
Let $KG$ be a non-commutative strongly Lie solvable group algebra of a group $G$ over a field $K$ of positive characteristic $p$. In this note we state necessary and sufficient conditions so that the strong Lie derived length of $KG$ assumes its minimal value, namely $\lceil \log_{2}(p+1)\rceil $.

Keywords:group algebras, strong Lie derived length
Categories:16S34, 17B30

16. CMB 2007 (vol 50 pp. 603)

Penkov, Ivan; Zuckerman, Gregg
Construction of Generalized Harish-Chandra Modules with Arbitrary Minimal $\mathfrak k$-Type
Let $\mathfrak g$ be a semisimple complex Lie algebra and $\k\subset\g$ be any algebraic subalgebra reductive in $\mathfrak g$. For any simple finite dimensional $\mathfrak k$-module $V$, we construct simple $(\mathfrak g,\mathfrak k)$-modules $M$ with finite dimensional $\mathfrak k$-isotypic components such that $V$ is a $\mathfrak k$-submodule of $M$ and the Vogan norm of any simple $\k$-submodule $V'\subset M, V'\not\simeq V$, is greater than the Vogan norm of $V$. The $(\mathfrak g,\mathfrak k)$-modules $M$ are subquotients of the fundamental series of $(\mathfrak g,\mathfrak k)$-modules.

Categories:17B10, 17B55

17. CMB 2007 (vol 50 pp. 469)

Tvalavadze, M. V.
Simple Decompositions of the Exceptional Jordan Algebra
This paper presents some results on the simple exceptional Jordan algebra over an algebraically closed field $\Phi$ of characteristic not $2$. Namely an example of simple decomposition of $H(O_3)$ into the sum of two subalgebras of the type $H(Q_3)$ is produced, and it is shown that this decomposition is the only one possible in terms of simple subalgebras.

Category:17C40

18. CMB 2006 (vol 49 pp. 492)

Chan, Kai-Cheong; Đoković, Dragomir Ž.
Conjugacy Classes of Subalgebras of the Real Sedenions
By applying the Cayley--Dickson process to the division algebra of real octonions, one obtains a 16-dimensional real algebra known as (real) sedenions. We denote this algebra by $\bA_4$. It is a flexible quadratic algebra (with unit element 1) but not a division algebra. We classify the subalgebras of $\bA_4$ up to conjugacy (\emph{i.e.,} up to the action of the automorphism group $G$ of $\bA_4$) with one exception: we leave aside the more complicated case of classifying the quaternion subalgebras. Any nonzero subalgebra contains 1 and we show that there are no proper subalgebras of dimension 5, 7 or $>8$. The proper non-division subalgebras have dimensions 3, 6 and 8. We show that in each of these dimensions there is exactly one conjugacy class of such subalgebras. There are infinitely many conjugacy classes of subalgebras in dimensions 2 and 4, but only 4 conjugacy classes in dimension 8.

Categories:17A45, 17A36, 17A20

19. CMB 2005 (vol 48 pp. 587)

Lopes, Samuel A.
Separation of Variables for $U_{q}(\mathfrak{sl}_{n+1})^{+}$
Let $U_{q}(\SL)^{+}$ be the positive part of the quantized enveloping algebra $U_{q}(\SL)$. Using results of Alev--Dumas and Caldero related to the center of $U_{q}(\SL)^{+}$, we show that this algebra is free over its center. This is reminiscent of Kostant's separation of variables for the enveloping algebra $U(\g)$ of a complex semisimple Lie algebra $\g$, and also of an analogous result of Joseph--Letzter for the quantum algebra $\Check{U}_{q}(\g)$. Of greater importance to its representation theory is the fact that $\U{+}$ is free over a larger polynomial subalgebra $N$ in $n$ variables. Induction from $N$ to $\U{+}$ provides infinite-dimensional modules with good properties, including a grading that is inherited by submodules.

Categories:17B37, 16W35, 17B10, 16D60

20. CMB 2005 (vol 48 pp. 460)

Sommers, Eric N.
$B$-Stable Ideals in the Nilradical of a Borel Subalgebra
We count the number of strictly positive $B$-stable ideals in the nilradical of a Borel subalgebra and prove that the minimal roots of any $B$-stable ideal are conjugate by an element of the Weyl group to a subset of the simple roots. We also count the number of ideals whose minimal roots are conjugate to a fixed subset of simple roots.

Categories:20F55, 17B20, 05E99

21. CMB 2005 (vol 48 pp. 394)

Đoković, D. Ž.; Szechtman, F.; Zhao, K.
Diagonal Plus Tridiagonal Representatives for Symplectic Congruence Classes of Symmetric Matrices
Let $n=2m$ be even and denote by $\Sp_n(F)$ the symplectic group of rank $m$ over an infinite field $F$ of characteristic different from $2$. We show that any $n\times n$ symmetric matrix $A$ is equivalent under symplectic congruence transformations to the direct sum of $m\times m$ matrices $B$ and $C$, with $B$ diagonal and $C$ tridiagonal. Since the $\Sp_n(F)$-module of symmetric $n\times n$ matrices over $F$ is isomorphic to the adjoint module $\sp_n(F)$, we infer that any adjoint orbit of $\Sp_n(F)$ in $\sp_n(F)$ has a representative in the sum of $3m-1$ root spaces, which we explicitly determine.

Categories:11E39, 15A63, 17B20

22. CMB 2005 (vol 48 pp. 445)

Patras, Frédéric; Reutenauer, Christophe; Schocker, Manfred
On the Garsia Lie Idempotent
The orthogonal projection of the free associative algebra onto the free Lie algebra is afforded by an idempotent in the rational group algebra of the symmetric group $S_n$, in each homogenous degree $n$. We give various characterizations of this Lie idempotent and show that it is uniquely determined by a certain unit in the group algebra of $S_{n-1}$. The inverse of this unit, or, equivalently, the Gram matrix of the orthogonal projection, is described explicitly. We also show that the Garsia Lie idempotent is not constant on descent classes (in fact, not even on coplactic classes) in $S_n$.

Categories:17B01, 05A99, 16S30, 17B60

23. CMB 2003 (vol 46 pp. 597)

Neeb, Karl-Hermann; Penkov, Ivan
Cartan Subalgebras of $\mathfrak{gl}_\infty$
Let $V$ be a vector space over a field $\mathbb{K}$ of characteristic zero and $V_*$ be a space of linear functionals on $V$ which separate the points of $V$. We consider $V\otimes V_*$ as a Lie algebra of finite rank operators on $V$, and set $\mathfrak{gl} (V,V_*) := V\otimes V_*$. We define a Cartan subalgebra of $\mathfrak{gl} (V,V_*)$ as the centralizer of a maximal subalgebra every element of which is semisimple, and then give the following description of all Cartan subalgebras of $\mathfrak{gl} (V,V_*)$ under the assumption that $\mathbb{K}$ is algebraically closed. A subalgebra of $\mathfrak{gl} (V,V_*)$ is a Cartan subalgebra if and only if it equals $\bigoplus_j \bigl( V_j \otimes (V_j)_* \bigr) \oplus (V^0 \otimes V_*^0)$ for some one-dimensional subspaces $V_j \subseteq V$ and $(V_j)_* \subseteq V_*$ with $(V_i)_* (V_j) = \delta_{ij} \mathbb{K}$ and such that the spaces $V_*^0 = \bigcap_j (V_j)^\bot \subseteq V_*$ and $V^0 = \bigcap_j \bigl( (V_j)_* \bigr)^\bot \subseteq V$ satisfy $V_*^0 (V^0) = \{0\}$. We then discuss explicit constructions of subspaces $V_j$ and $(V_j)_*$ as above. Our second main result claims that a Cartan subalgebra of $\mathfrak{gl} (V,V_*)$ can be described alternatively as a locally nilpotent self-normalizing subalgebra whose adjoint representation is locally finite, or as a subalgebra $\mathfrak{h}$ which coincides with the maximal locally nilpotent $\mathfrak{h}$-submodule of $\mathfrak{gl} (V,V_*)$, and such that the adjoint representation of $\mathfrak{h}$ is locally finite.

Categories:17B65, 17B20

24. CMB 2003 (vol 46 pp. 529)

Billig, Yuly
Representations of the Twisted Heisenberg--Virasoro Algebra at Level Zero
We describe the structure of the irreducible highest weight modules for the twisted Heisenberg--Virasoro Lie algebra at level zero. We prove that either a Verma module is irreducible or its maximal submodule is cyclic.

Categories:17B68, 17B65

25. CMB 2002 (vol 45 pp. 653)

Martínez, Consuelo; Zelmanov, Efim
Specializations of Jordan Superalgebras
In this paper we study specializations and one-sided bimodules of simple Jordan superalgebras.

Categories:17C70, 17C25, 17C40
Page
   1 2    

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/