1. CMB Online first
 Ying, Zhiling; Koşan, Tamer; Zhou, Yiqiang

Rings in which every element is a sum of two tripotents
Let $R$ be a ring. The following results are proved: $(1)$ every
element of $R$ is a sum of an idempotent and a tripotent that
commute iff $R$ has the identity $x^6=x^4$ iff $R\cong R_1\times
R_2$, where $R_1/J(R_1)$ is Boolean with $U(R_1)$ a group of
exponent $2$ and $R_2$ is zero or a subdirect product of $\mathbb
Z_3$'s; $(2)$ every element of $R$ is either a sum or a difference
of two commuting idempotents iff $R\cong R_1\times R_2$, where
$R_1/J(R_1)$ is Boolean with $J(R_1)=0$ or $J(R_1)=\{0,2\}$,
and $R_2$ is zero or a subdirect product of $\mathbb Z_3$'s;
$(3)$ every element of $R$ is a sum of two commuting tripotents
iff $R\cong R_1\times R_2\times R_3$, where $R_1/J(R_1)$ is Boolean
with $U(R_1)$ a group of exponent $2$, $R_2$ is zero or a subdirect
product of $\mathbb Z_3$'s, and $R_3$ is zero or a subdirect
product of $\mathbb Z_5$'s.
Keywords:idempotent, tripotent, Boolean ring, polynomial identity $x^3=x$, polynomial identity $x^6=x^4$, polynomial identity $x^8=x^4$ Categories:16S50, 16U60, 16U90 

2. CMB 2010 (vol 53 pp. 587)
 Birkenmeier, Gary F.; Park, Jae Keol; Rizvi, S. Tariq

Hulls of Ring Extensions
We investigate the behavior of the quasiBaer and the
right FIextending right ring hulls under various ring extensions
including group ring extensions, full and triangular matrix ring
extensions, and infinite matrix ring extensions. As a consequence,
we show that for semiprime rings $R$ and $S$, if $R$ and $S$ are
Morita equivalent, then so are the quasiBaer right ring hulls
$\widehat{Q}_{\mathfrak{qB}}(R)$ and $\widehat{Q}_{\mathfrak{qB}}(S)$ of
$R$ and $S$, respectively. As an application, we prove that if
unital $C^*$algebras $A$ and $B$ are Morita equivalent as rings,
then the bounded central closure of $A$ and that of $B$ are
strongly Morita equivalent as $C^*$algebras. Our results show
that the quasiBaer property is always preserved by infinite
matrix rings, unlike the Baer property. Moreover, we give an
affirmative answer to an open question of Goel and Jain for the
commutative group ring $A[G]$ of a torsionfree Abelian group $G$
over a commutative semiprime quasicontinuous ring $A$. Examples
that illustrate and delimit the results of this paper are provided.
Keywords:(FI)extending, Morita equivalent, ring of quotients, essential overring, (quasi)Baer ring, ring hull, u.p.monoid, $C^*$algebra Categories:16N60, 16D90, 16S99, 16S50, 46L05 

3. CMB 2010 (vol 53 pp. 223)
 Chuang, ChenLian; Lee, TsiuKwen

Density of Polynomial Maps
Let $R$ be a dense subring of $\operatorname{End}(_DV)$, where $V$ is a left vector space over a division ring $D$. If $\dim{_DV}=\infty$, then the range of any nonzero polynomial $f(X_1,\dots,X_m)$ on $R$ is dense in $\operatorname{End}(_DV)$. As an application, let $R$ be a prime ring without nonzero nil onesided ideals and $0\ne a\in R$. If $af(x_1,\dots,x_m)^{n(x_i)}=0$ for all $x_1,\dots,x_m\in R$, where $n(x_i)$ is a positive integer depending on $x_1,\dots,x_m$, then $f(X_1,\dots,X_m)$ is a polynomial identity of $R$ unless $R$ is a finite matrix ring over a finite field.
Keywords:density, polynomial, endomorphism ring, PI Categories:16D60, 16S50 

4. CMB 2009 (vol 52 pp. 145)
 Wang, Z.; Chen, J. L.

$2$Clean Rings
A ring $R$ is said to be $n$clean if every
element can be written as a sum of an idempotent and $n$ units.
The class of these rings contains clean rings and $n$good rings
in which each element is a sum of $n$ units. In this paper, we
show that for any ring $R$, the endomorphism ring of a free
$R$module of rank at least 2 is $2$clean and that the ring $B(R)$
of all $\omega\times \omega$ row and columnfinite matrices over
any ring $R$ is $2$clean. Finally, the group ring $RC_{n}$ is
considered where $R$ is a local ring.
Keywords:$2$clean rings, $2$good rings, free modules, row and columnfinite matrix rings, group rings Categories:16D70, 16D40, 16S50 

5. CMB 2006 (vol 49 pp. 265)
 Nicholson, W. K.; Zhou, Y.

Endomorphisms That Are the Sum of a Unit and a Root of a Fixed Polynomial
If $C=C(R)$ denotes the center of a ring $R$ and $g(x)$ is a polynomial in
C[x]$, Camillo and Sim\'{o}n called a ring $g(x)$clean if every element is
the sum of a unit and a root of $g(x)$. If $V$ is a vector space of
countable dimension over a division ring $D,$ they showed that
$\end {}_{D}V$ is
$g(x)$clean provided that $g(x)$ has two roots in $C(D)$. If $g(x)=xx^{2}$
this shows that $\end {}_{D}V$ is clean, a result of Nicholson and Varadarajan.
In this paper we remove the countable condition, and in fact prove that
$\Mend {}_{R}M$ is $g(x)$clean for any semisimple module $M$ over an arbitrary
ring $R$ provided that $g(x)\in (xa)(xb)C[x]$ where $a,b\in C$ and both $b$
and $ba$ are units in $R$.
Keywords:Clean rings, linear transformations, endomorphism rings Categories:16S50, 16E50 

6. CMB 2000 (vol 43 pp. 413)
7. CMB 1997 (vol 40 pp. 198)