Expand all Collapse all | Results 1 - 5 of 5 |
1. CMB 2014 (vol 57 pp. 511)
Simplicity of Partial Skew Group Rings of Abelian Groups Let $A$ be a ring with local units, $E$ a set of local units for $A$,
$G$ an abelian group and $\alpha$ a partial action of $G$ by ideals of
$A$ that contain local units.
We show that $A\star_{\alpha} G$ is simple if and only if $A$ is
$G$-simple and the center of the corner $e\delta_0 (A\star_{\alpha} G)
e \delta_0$ is a field for all $e\in E$. We apply the result to
characterize simplicity of partial skew group rings in two cases,
namely for partial skew group rings arising from partial actions by
clopen subsets of a compact set and partial actions on the set level.
Keywords:partial skew group rings, simple rings, partial actions, abelian groups Categories:16S35, 37B05 |
2. CMB 2009 (vol 53 pp. 321)
A Theorem on Unit-Regular Rings Let $R$ be a unit-regular ring and let $\sigma $ be an endomorphism of
$R$ such that $\sigma (e)=e$ for all $e^2=e\in R$ and let $n\ge 0$. It
is proved that every element of $R[x \mathinner;\sigma]/(x^{n+1})$ is
equivalent to an element of the form $e_0+e_1x+\dots +e_nx^n$, where
the $e_i$ are orthogonal idempotents of $R$. As an application, it is
proved that $R[x \mathinner; \sigma ]/(x^{n+1})$ is left morphic for each
$n\ge 0$.
Keywords:morphic rings, unit-regular rings, skew polynomial rings Categories:16E50, 16U99, 16S70, 16S35 |
3. CMB 2009 (vol 52 pp. 564)
Group Actions on Quasi-Baer Rings A ring $R$ is called {\it quasi-Baer} if the right
annihilator of every right ideal of $R$ is generated by an
idempotent as a right ideal. We investigate the quasi-Baer
property of skew group rings and fixed rings under a finite group
action on a semiprime ring and their applications to
$C^*$-algebras.
Various examples to illustrate and
delimit our results are provided.
Keywords:(quasi-) Baer ring, fixed ring, skew group ring, $C^*$-algebra, local multiplier algebra Categories:16S35, 16W22, 16S90, 16W20, 16U70 |
4. CMB 2008 (vol 51 pp. 261)
On the Classification of Rational Quantum Tori and the Structure of Their Automorphism Groups An $n$-dimensional quantum torus is a twisted group algebra of the
group $\Z^n$. It is called rational if all invertible commutators are roots
of unity. In the present note we describe a normal form for rational
$n$-dimensional quantum
tori over any field. Moreover, we show that for
$n = 2$ the natural exact sequence
describing the automorphism group of the quantum torus splits over any
field.
Keywords:quantum torus, normal form, automorphisms of quantum tori Category:16S35 |
5. CMB 2002 (vol 45 pp. 388)
AlgÃ¨bres simples centrales de degrÃ© 5 et $E_8$ As a consequence of a theorem of Rost-Springer, we establish that the
cyclicity problem for central simple algebra of degree~5 on fields
containg a fifth root of unity is equivalent to the study of
anisotropic elements of order 5 in the split group of type~$E_8$.
Keywords:algÃ¨bres simples centrales, cohomologie galoisienne Categories:16S35, 12G05, 20G15 |