1. CMB 2012 (vol 56 pp. 584)
 Liau, PaoKuei; Liu, ChengKai

On Automorphisms and Commutativity in Semiprime Rings
Let $R$ be a semiprime ring with center
$Z(R)$. For $x,y\in R$, we denote by $[x,y]=xyyx$ the commutator of
$x$ and $y$. If $\sigma$ is a nonidentity automorphism of $R$ such
that
$$
\Big[\big[\dots\big[[\sigma(x^{n_0}),x^{n_1}],x^{n_2}\big],\dots\big],x^{n_k}\Big]=0
$$
for all $x \in R$, where $n_{0},n_{1},n_{2},\dots,n_{k}$ are fixed
positive integers, then there exists a map $\mu\colon R\rightarrow Z(R)$
such that $\sigma(x)=x+\mu(x)$ for all $x\in R$. In particular, when
$R$ is a prime ring, $R$ is commutative.
Keywords:automorphism, generalized polynomial identity (GPI) Categories:16N60, 16W20, 16R50 

2. CMB 2011 (vol 55 pp. 271)
3. CMB 2009 (vol 52 pp. 267)
 Ko\c{s}an, Muhammet Tamer

Extensions of Rings Having McCoy Condition
Let $R$ be an associative ring with unity.
Then $R$ is said to be a {\it right McCoy ring} when the equation
$f(x)g(x)=0$ (over $R[x]$), where $0\neq f(x),g(x) \in R[x]$,
implies that there exists a nonzero element $c\in R$ such that
$f(x)c=0$. In this paper, we characterize some basic ring
extensions of right McCoy rings and we prove that if $R$ is a
right McCoy ring, then $R[x]/(x^n)$ is
a right McCoy ring for any positive integer $n\geq 2$ .
Keywords:right McCoy ring, Armendariz ring, reduced ring, reversible ring, semicommutative ring Categories:16D10, 16D80, 16R50 

4. CMB 2003 (vol 46 pp. 14)
5. CMB 1998 (vol 41 pp. 118)
 Valenti, Angela

On permanental identities of symmetric and skewsymmetric matrices in characteristic \lowercase{$p$}
Let $M_n(F)$ be the algebra of $n \times n$
matrices over a field $F$ of characteristic $p>2$ and let $\ast$ be an
involution on $M_n(F)$. If $s_1, \ldots, s_r$ are symmetric
variables we determine the smallest $r$ such that the polynomial
$$
P_{r}(s_1, \ldots, s_{r}) = \sum_{\sigma \in {\cal
S}_r}s_{\sigma(1)}\cdots s_{\sigma(r)}
$$
is a $\ast$polynomial identity of $M_n(F)$ under either the
symplectic or the transpose involution. We also prove an analogous
result for the polynomial
$$
C_r(k_1, \ldots, k_r, k'_1, \ldots, k'_r) = \sum_
{\sigma, \tau \in {\cal S}_r}k_{\sigma(1)}k'_{\tau(1)}\cdots
k_{\sigma(r)}k'_{\tau(r)}
$$
where $k_1, \ldots, k_r, k'_1, \ldots, k'_r$ are skew
variables under the transpose involution.
Category:16R50 
