CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 16D40 ( Free, projective, and flat modules and ideals [See also 19A13] )

  Expand all        Collapse all Results 1 - 2 of 2

1. CMB Online first

Hou, Ruchen
On Global Dimensions of Tree Type Finite Dimensional Algebras
A formula is provided to explicitly describe global dimensions of all kinds of tree type finite dimensional $k-$algebras for $k$ an algebraic closed field. In particular, it is pointed out that if the underlying tree type quiver has $n$ vertices, then the maximum of possible global dimensions is $n-1$.

Keywords:global dimension, tree type finite dimensional $k-$algebra, quiver
Categories:16D40, 16E10, , 16G20

2. CMB 2009 (vol 52 pp. 145)

Wang, Z.; Chen, J. L.
$2$-Clean Rings
A ring $R$ is said to be $n$-clean if every element can be written as a sum of an idempotent and $n$ units. The class of these rings contains clean rings and $n$-good rings in which each element is a sum of $n$ units. In this paper, we show that for any ring $R$, the endomorphism ring of a free $R$-module of rank at least 2 is $2$-clean and that the ring $B(R)$ of all $\omega\times \omega$ row and column-finite matrices over any ring $R$ is $2$-clean. Finally, the group ring $RC_{n}$ is considered where $R$ is a local ring.

Keywords:$2$-clean rings, $2$-good rings, free modules, row and column-finite matrix rings, group rings
Categories:16D70, 16D40, 16S50

© Canadian Mathematical Society, 2014 : https://cms.math.ca/