1. CMB 2008 (vol 51 pp. 86)
2. CMB 2005 (vol 48 pp. 394)
 Đoković, D. Ž.; Szechtman, F.; Zhao, K.

Diagonal Plus Tridiagonal Representatives for Symplectic Congruence Classes of Symmetric Matrices
Let $n=2m$ be even and denote by $\Sp_n(F)$ the symplectic group
of rank $m$ over an infinite field $F$ of characteristic different
from $2$. We show that any $n\times n$ symmetric matrix $A$ is
equivalent under symplectic congruence transformations to the
direct sum of $m\times m$ matrices $B$ and $C$, with $B$ diagonal
and $C$ tridiagonal. Since the $\Sp_n(F)$module of symmetric
$n\times n$ matrices over $F$ is isomorphic to the adjoint module
$\sp_n(F)$, we infer that any adjoint orbit of $\Sp_n(F)$ in
$\sp_n(F)$ has a representative in the sum of $3m1$ root spaces,
which we explicitly determine.
Categories:11E39, 15A63, 17B20 

3. CMB 2004 (vol 47 pp. 73)
 Li, Ma; Dezhong, Chen

Systems of Hermitian Quadratic Forms
In this paper, we give some conditions to judge when a system of
Hermitian quadratic forms has a real linear combination which is
positive definite or positive semidefinite. We also study some
related geometric and topological properties of the moduli space.
Keywords:hermitian quadratic form, positive definite, positive semidefinite Category:15A63 
