CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 15 ( Linear and multilinear algebra; matrix theory )

  Expand all        Collapse all Results 1 - 16 of 16

1. CMB 2012 (vol 57 pp. 25)

Bourin, Jean-Christophe; Harada, Tetsuo; Lee, Eun-Young
Subadditivity Inequalities for Compact Operators
Some subadditivity inequalities for matrices and concave functions also hold for Hilbert space operators, but (unfortunately!) with an additional $\varepsilon$ term. It seems not possible to erase this residual term. However, in case of compact operators we show that the $\varepsilon$ term is unnecessary. Further, these inequalities are strict in a certain sense when some natural assumptions are satisfied. The discussion also stresses on matrices and their compressions and several open questions or conjectures are considered, both in the matrix and operator settings.

Keywords:concave or convex function, Hilbert space, unitary orbits, compact operators, compressions, matrix inequalities
Categories:47A63, 15A45

2. CMB 2010 (vol 54 pp. 237)

Creedon, Leo; Gildea, Joe
The Structure of the Unit Group of the Group Algebra ${\mathbb{F}}_{2^k}D_{8}$
Let $RG$ denote the group ring of the group $G$ over the ring $R$. Using an isomorphism between $RG$ and a certain ring of $n \times n$ matrices in conjunction with other techniques, the structure of the unit group of the group algebra of the dihedral group of order $8$ over any finite field of chracteristic $2$ is determined in terms of split extensions of cyclic groups.

Categories:16U60, 16S34, 20C05, 15A33

3. CMB 2009 (vol 52 pp. 295)

P{\l}otka, Krzysztof
On Functions Whose Graph is a Hamel Basis, II
We say that a function $h \from \real \to \real$ is a Hamel function ($h \in \ham$) if $h$, considered as a subset of $\real^2$, is a Hamel basis for $\real^2$. We show that $\A(\ham)\geq\omega$, \emph{i.e.,} for every finite $F \subseteq \real^\real$ there exists $f\in\real^\real$ such that $f+F \subseteq \ham$. From the previous work of the author it then follows that $\A(\ham)=\omega$.

Keywords:Hamel basis, additive, Hamel functions
Categories:26A21, 54C40, 15A03, 54C30

4. CMB 2009 (vol 52 pp. 9)

Chassé, Dominique; Saint-Aubin, Yvan
On the Spectrum of an $n!\times n!$ Matrix Originating from Statistical Mechanics
Let $R_n(\alpha)$ be the $n!\times n!$ matrix whose matrix elements $[R_n(\alpha)]_{\sigma\rho}$, with $\sigma$ and $\rho$ in the symmetric group $\sn$, are $\alpha^{\ell(\sigma\rho^{-1})}$ with $0<\alpha<1$, where $\ell(\pi)$ denotes the number of cycles in $\pi\in \sn$. We give the spectrum of $R_n$ and show that the ratio of the largest eigenvalue $\lambda_0$ to the second largest one (in absolute value) increases as a positive power of $n$ as $n\rightarrow \infty$.

Keywords:symmetric group, representation theory, eigenvalue, statistical physics
Categories:20B30, 20C30, 15A18, 82B20, 82B28

5. CMB 2008 (vol 51 pp. 86)

Nakazato, Hiroshi; Bebiano, Natália; Providência, Jo\ ao da
The Numerical Range of 2-Dimensional Krein Space Operators
The tracial numerical range of operators on a $2$-dimensional Krein space is investigated. Results in the vein of those obtained in the context of Hilbert spaces are obtained.

Keywords:numerical range, generalized numerical range, indefinite inner product space
Categories:15A60, 15A63, 15A45

6. CMB 2006 (vol 49 pp. 281)

Ragnarsson, Carl Johan; Suen, Wesley Wai; Wagner, David G.
Correction to a Theorem on Total Positivity
A well-known theorem states that if $f(z)$ generates a PF$_r$ sequence then $1/f(-z)$ generates a PF$_r$ sequence. We give two counterexamples which show that this is not true, and give a correct version of the theorem. In the infinite limit the result is sound: if $f(z)$ generates a PF sequence then $1/f(-z)$ generates a PF sequence.

Keywords:total positivity, Toeplitz matrix, Pólya frequency sequence, skew Schur function
Categories:15A48, 15A45, 15A57, 05E05

7. CMB 2006 (vol 49 pp. 313)

Wagner, Roy
On the Relation Between the Gaussian Orthogonal Ensemble and Reflections, or a Self-Adjoint Version of the Marcus--Pisier Inequality
We prove a self-adjoint analogue of the Marcus--Pisier inequality, comparing the expected value of convex functionals on randomreflection matrices and on elements of the Gaussian orthogonal (or unitary) ensemble.

Categories:15A52, 46B09, 46L54

8. CMB 2005 (vol 48 pp. 394)

Đoković, D. Ž.; Szechtman, F.; Zhao, K.
Diagonal Plus Tridiagonal Representatives for Symplectic Congruence Classes of Symmetric Matrices
Let $n=2m$ be even and denote by $\Sp_n(F)$ the symplectic group of rank $m$ over an infinite field $F$ of characteristic different from $2$. We show that any $n\times n$ symmetric matrix $A$ is equivalent under symplectic congruence transformations to the direct sum of $m\times m$ matrices $B$ and $C$, with $B$ diagonal and $C$ tridiagonal. Since the $\Sp_n(F)$-module of symmetric $n\times n$ matrices over $F$ is isomorphic to the adjoint module $\sp_n(F)$, we infer that any adjoint orbit of $\Sp_n(F)$ in $\sp_n(F)$ has a representative in the sum of $3m-1$ root spaces, which we explicitly determine.

Categories:11E39, 15A63, 17B20

9. CMB 2005 (vol 48 pp. 267)

Rodman, Leiba; Šemrl, Peter; Sourour, Ahmed R.
Continuous Adjacency Preserving Maps on Real Matrices
It is proved that every adjacency preserving continuous map on the vector space of real matrices of fixed size, is either a bijective affine tranformation of the form $ A \mapsto PAQ+R$, possibly followed by the transposition if the matrices are of square size, or its range is contained in a linear subspace consisting of matrices of rank at most one translated by some matrix $R$. The result extends previously known theorems where the map was assumed to be also injective.

Keywords:adjacency of matrices, continuous preservers, affine transformations
Categories:15A03, 15A04.

10. CMB 2004 (vol 47 pp. 73)

Li, Ma; Dezhong, Chen
Systems of Hermitian Quadratic Forms
In this paper, we give some conditions to judge when a system of Hermitian quadratic forms has a real linear combination which is positive definite or positive semi-definite. We also study some related geometric and topological properties of the moduli space.

Keywords:hermitian quadratic form, positive definite, positive semi-definite
Category:15A63

11. CMB 2003 (vol 46 pp. 332)

Đoković, Dragomir Z.; Tam, Tin-Yau
Some Questions about Semisimple Lie Groups Originating in Matrix Theory
We generalize the well-known result that a square traceless complex matrix is unitarily similar to a matrix with zero diagonal to arbitrary connected semisimple complex Lie groups $G$ and their Lie algebras $\mathfrak{g}$ under the action of a maximal compact subgroup $K$ of $G$. We also introduce a natural partial order on $\mathfrak{g}$: $x\le y$ if $f(K\cdot x) \subseteq f(K\cdot y)$ for all $f\in \mathfrak{g}^*$, the complex dual of $\mathfrak{g}$. This partial order is $K$-invariant and induces a partial order on the orbit space $\mathfrak{g}/K$. We prove that, under some restrictions on $\mathfrak{g}$, the set $f(K\cdot x)$ is star-shaped with respect to the origin.

Categories:15A45, 20G20, 22E60

12. CMB 2003 (vol 46 pp. 54)

Cheung, Wai-Shun; Li, Chi-Kwong
Linear Maps Transforming the Unitary Group
Let $U(n)$ be the group of $n\times n$ unitary matrices. We show that if $\phi$ is a linear transformation sending $U(n)$ into $U(m)$, then $m$ is a multiple of $n$, and $\phi$ has the form $$ A \mapsto V[(A\otimes I_s)\oplus (A^t \otimes I_{r})]W $$ for some $V, W \in U(m)$. From this result, one easily deduces the characterization of linear operators that map $U(n)$ into itself obtained by Marcus. Further generalization of the main theorem is also discussed.

Keywords:linear map, unitary group, general linear group
Category:15A04

13. CMB 2001 (vol 44 pp. 270)

Cheung, Wai-Shun; Li, Chi-Kwong
Linear Operators Preserving Generalized Numerical Ranges and Radii on Certain Triangular Algebras of Matrices
Let $c = (c_1, \dots, c_n)$ be such that $c_1 \ge \cdots \ge c_n$. The $c$-numerical range of an $n \times n$ matrix $A$ is defined by $$ W_c(A) = \Bigl\{ \sum_{j=1}^n c_j (Ax_j,x_j) : \{x_1, \dots, x_n\} \text{ an orthonormal basis for } \IC^n \Bigr\}, $$ and the $c$-numerical radius of $A$ is defined by $r_c (A) = \max \{|z| : z \in W_c (A)\}$. We determine the structure of those linear operators $\phi$ on algebras of block triangular matrices, satisfying $$ W_c \bigl( \phi(A) \bigr) = W_c (A) \text{ for all } A \quad \text{or} \quad r_c \bigl( \phi(A) \bigr) = r_c (A) \text{ for all } A. $$

Keywords:linear operator, numerical range (radius), block triangular matrices
Categories:15A04, 15A60, 47B49

14. CMB 2000 (vol 43 pp. 448)

Li, Chi-Kwong; Zaharia, Alexandru
Nonconvexity of the Generalized Numerical Range Associated with the Principal Character
Suppose $m$ and $n$ are integers such that $1 \le m \le n$. For a subgroup $H$ of the symmetric group $S_m$ of degree $m$, consider the {\it generalized matrix function} on $m\times m$ matrices $B = (b_{ij})$ defined by $d^H(B) = \sum_{\sigma \in H} \prod_{j=1}^m b_{j\sigma(j)}$ and the {\it generalized numerical range} of an $n\times n$ complex matrix $A$ associated with $d^H$ defined by $$ \wmp(A) = \{d^H (X^*AX): X \text{ is } n \times m \text{ such that } X^*X = I_m\}. $$ It is known that $\wmp(A)$ is convex if $m = 1$ or if $m = n = 2$. We show that there exist normal matrices $A$ for which $\wmp(A)$ is not convex if $3 \le m \le n$. Moreover, for $m = 2 < n$, we prove that a normal matrix $A $ with eigenvalues lying on a straight line has convex $\wmp(A)$ if and only if $\nu A$ is Hermitian for some nonzero $\nu \in \IC$. These results extend those of Hu, Hurley and Tam, who studied the special case when $2 \le m \le 3 \le n$ and $H = S_m$.

Keywords:convexity, generalized numerical range, matrices
Category:15A60

15. CMB 1998 (vol 41 pp. 178)

Krupnik, Ilya; Lancaster, Peter
Minimal pencil realizations of rational matrix functions with symmetries
A theory of minimal realizations of rational matrix functions $W(\lambda)$ in the ``pencil'' form $W(\lambda)=C(\lambda A_1-A_2)^{-1}B$ is developed. In particular, properties of the pencil $\lambda A_1-A_2$ are discussed when $W(\lambda)$ is hermitian on the real line, and when $W(\lambda)$ is hermitian on the unit circle.

Categories:93Bxx, 15A23

16. CMB 1998 (vol 41 pp. 105)

So, Wasin
An explicit criterion for the convexity of quaternionic numerical range
Quaternionic numerical range is not always a convex set. In this note, an explicit criterion is given for the convexity of quaternionic numerical range.

Categories:15A33, 15A60

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/