Expand all Collapse all | Results 1 - 2 of 2 |
1. CMB 2009 (vol 52 pp. 535)
A Note on Locally Nilpotent Derivations\\ and Variables of $k[X,Y,Z]$ We strengthen certain results
concerning actions of $(\Comp,+)$ on $\Comp^{3}$
and embeddings of $\Comp^{2}$ in $\Comp^{3}$,
and show that these results are in fact valid
over any field of characteristic zero.
Keywords:locally nilpotent derivations, group actions, polynomial automorphisms, variable, affine space Categories:14R10, 14R20, 14R25, 13N15 |
2. CMB 2005 (vol 48 pp. 622)
Hyperplanes of the Form ${f_1(x,y)z_1+\dots+f_k(x,y)z_k+g(x,y)}$ Are Variables The Abhyankar--Sathaye Embedded Hyperplane Problem asks whe\-ther any
hypersurface of $\C^n$ isomorphic to $\C^{n-1}$ is rectifiable, {\em
i.e.,}
equivalent to a linear hyperplane up to an automorphism of $\C^n$.
Generalizing the approach adopted by Kaliman, V\'en\'ereau, and
Zaidenberg which
consists in using almost nothing but the acyclicity of $\C^{n-1}$, we solve
this problem for hypersurfaces given by polynomials of $\C[x,y,z_1,\dots, z_k]$
as in the title.
Keywords:variables, Abhyankar--Sathaye Embedding Problem Categories:14R10, 14R25 |