1. CMB 2014 (vol 58 pp. 80)
 Harada, Megumi; Horiguchi, Tatsuya; Masuda, Mikiya

The Equivariant Cohomology Rings of Peterson Varieties in All Lie
Types
Let $G$ be a complex semisimple linear algebraic group and let
$Pet$ be the associated Peterson variety in the flag
variety $G/B$.
The main theorem of this note gives an efficient presentation
of the equivariant cohomology ring $H^*_S(Pet)$ of the
Peterson variety as a quotient of a polynomial ring by an ideal
$J$ generated by quadratic polynomials, in the spirit of the
Borel presentation of the cohomology of the flag variety. Here
the group $S \cong \mathbb{C}^*$ is a certain subgroup of a maximal
torus $T$ of $G$.
Our description of the ideal $J$ uses the Cartan matrix and is
uniform across Lie types. In our arguments we use the Monk formula
and Giambelli formula for the equivariant cohomology rings of
Peterson varieties for all Lie types, as obtained in the work
of Drellich. Our result generalizes a previous theorem of FukukawaHaradaMasuda,
which was only for Lie type $A$.
Keywords:equivariant cohomology, Peterson varieties, flag varieties, Monk formula, Giambelli formula Categories:55N91, 14N15 

2. CMB 2009 (vol 52 pp. 200)
 Gatto, Letterio; Santiago, Ta\'\i se

Schubert Calculus on a Grassmann Algebra
The ({\em classical}, {\em small quantum}, {\em equivariant})
cohomology ring of the grassmannian $G(k,n)$ is generated by
certain derivations operating on an exterior algebra of a free
module of rank $n$ ( Schubert calculus on a Grassmann
algebra). Our main result gives, in a unified way, a presentation
of all such cohomology rings in terms of generators and
relations. Using results of Laksov and Thorup, it also provides
a presentation of the universal
factorization algebra of a monic polynomial of degree $n$ into the
product of two monic polynomials, one of degree $k$.
Categories:14N15, 14M15 

3. CMB 2002 (vol 45 pp. 349)
 Coppens, Marc

Very Ample Linear Systems on BlowingsUp at General Points of Projective Spaces
Let $\mathbf{P}^n$ be the $n$dimensional projective space over some
algebraically closed field $k$ of characteristic $0$. For an integer
$t\geq 3$ consider the invertible sheaf $O(t)$ on $\mathbf{P}^n$ (Serre
twist of the structure sheaf). Let $N = \binom{t+n}{n}$, the
dimension of the space of global sections of $O(t)$, and let $k$ be an
integer satisfying $0\leq k\leq N  (2n+2)$. Let $P_1,\dots,P_k$
be general points on $\mathbf{P}^n$ and let $\pi \colon X \to
\mathbf{P}^n$ be the blowingup of $\mathbf{P}^n$ at those points.
Let $E_i = \pi^{1} (P_i)$ with $1\leq i\leq k$ be the exceptional
divisor. Then $M = \pi^* \bigl( O(t) \bigr) \otimes O_X (E_1 
\cdots E_k)$ is a very ample invertible sheaf on $X$.
Keywords:blowingup, projective space, very ample linear system, embeddings, Veronese map Categories:14E25, 14N05, 14N15 
