1. CMB 2009 (vol 52 pp. 493)
 Artebani, Michela

A OneDimensional Family of $K3$ Surfaces with a $\Z_4$ Action
The minimal resolution of the degree four cyclic cover of the plane
branched along a GIT stable quartic is a $K3$ surface with a non
symplectic action of $\Z_4$. In this paper
we study the geometry of the onedimensional family of $K3$ surfaces
associated to the locus of plane quartics with five nodes.
Keywords:genus three curves, $K3$ surfaces Categories:14J28, 14J50, 14J10 

2. CMB 2003 (vol 46 pp. 495)
 Baragar, Arthur

Canonical Vector Heights on Algebraic K3 Surfaces with Picard Number Two
Let $V$ be an algebraic K3 surface defined over a number field $K$.
Suppose $V$ has Picard number two and an infinite group of
automorphisms $\mathcal{A} = \Aut(V/K)$. In this paper, we
introduce the notion of a vector height $\mathbf{h} \colon V \to
\Pic(V) \otimes \mathbb{R}$ and show the existence of a canonical
vector height $\widehat{\mathbf{h}}$ with the following properties:
\begin{gather*}
\widehat{\mathbf{h}} (\sigma P) = \sigma_* \widehat{\mathbf{h}} (P) \\
h_D (P) = \widehat{\mathbf{h}} (P) \cdot D + O(1),
\end{gather*}
where $\sigma \in \mathcal{A}$, $\sigma_*$ is the pushforward of
$\sigma$ (the pullback of $\sigma^{1}$), and $h_D$ is a Weil
height associated to the divisor $D$. The bounded function implied
by the $O(1)$ does not depend on $P$. This allows us to attack
some arithmetic problems. For example, we show that the number of
rational points with bounded logarithmic height in an
$\mathcal{A}$orbit satisfies
$$
N_{\mathcal{A}(P)} (t,D) = \# \{Q \in \mathcal{A}(P) : h_D (Q)
Categories:11G50, 14J28, 14G40, 14J50, 14G05 
