Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 14H52 ( Elliptic curves [See also 11G05, 11G07, 14Kxx] )

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB 2011 (vol 55 pp. 850)

Shparlinski, Igor E.; Stange, Katherine E.
Character Sums with Division Polynomials
We obtain nontrivial estimates of quadratic character sums of division polynomials $\Psi_n(P)$, $n=1,2, \dots$, evaluated at a given point $P$ on an elliptic curve over a finite field of $q$ elements. Our bounds are nontrivial if the order of $P$ is at least $q^{1/2 + \varepsilon}$ for some fixed $\varepsilon > 0$. This work is motivated by an open question about statistical indistinguishability of some cryptographically relevant sequences that was recently brought up by K. Lauter and the second author.

Keywords:division polynomial, character sum
Categories:11L40, 14H52

2. CMB 2005 (vol 48 pp. 428)

Miyamoto, Roland; Top, Jaap
Reduction of Elliptic Curves in Equal Characteristic~3 (and~2)
and fibre type for elliptic curves over discrete valued fields of equal characteristic~3. Along the same lines, partial results are obtained in equal characteristic~2.

Categories:14H52, 14K15, 11G07, 11G05, 12J10

3. CMB 2000 (vol 43 pp. 239)

Yu, Gang
On the Number of Divisors of the Quadratic Form $m^2+n^2$
For an integer $n$, let $d(n)$ denote the ordinary divisor function. This paper studies the asymptotic behavior of the sum $$ S(x) := \sum_{m\leq x, n\leq x} d(m^2 + n^2). $$ It is proved in the paper that, as $x \to \infty$, $$ S(x) := A_1 x^2 \log x + A_2 x^2 + O_\epsilon (x^{\frac32 + \epsilon}), $$ where $A_1$ and $A_2$ are certain constants and $\epsilon$ is any fixed positive real number. The result corrects a false formula given in a paper of Gafurov concerning the same problem, and improves the error $O \bigl( x^{\frac53} (\log x)^9 \bigr)$ claimed by Gafurov.

Keywords:divisor, large sieve, exponential sums
Categories:11G05, 14H52

© Canadian Mathematical Society, 2014 :