1. CMB 2011 (vol 54 pp. 430)
 DeLand, Matthew

Complete Families of Linearly Nondegenerate Rational Curves
We prove that every complete family of linearly nondegenerate
rational curves of degree $e > 2$ in $\mathbb{P}^{n}$ has at most $n1$
moduli. For $e = 2$ we prove that such a family has at most $n$
moduli. The general method involves exhibiting a map from the base of
a family $X$ to the Grassmannian of $e$planes in $\mathbb{P}^{n}$ and
analyzing the resulting map on cohomology.
Categories:14N05, 14H10 

2. CMB 2009 (vol 52 pp. 161)
3. CMB 2008 (vol 51 pp. 519)
 Coskun, Izzet; Harris, Joe; Starr, Jason

The Effective Cone of the Kontsevich Moduli Space
In this paper we prove that the cone of effective divisors on the
Kontsevich moduli spaces of stable maps, $\Kgnb{0,0}(\PP^r,d)$,
stabilize when $r \geq d$. We give a complete characterization of the
effective divisors on $\Kgnb{0,0}(\PP^d,d)$. They are nonnegative
linear combinations of boundary divisors and the divisor of maps with
degenerate image.
Categories:14D20, 14E99, 14H10 

4. CMB 2000 (vol 43 pp. 162)
 Foth, Philip

Moduli Spaces of Polygons and Punctured Riemann Spheres
The purpose of this note is to give a simple combinatorial
construction of the map from the canonically compactified moduli
spaces of punctured complex projective lines to the moduli spaces
$\P_r$ of polygons with fixed side lengths in the Euclidean space
$\E^3$. The advantage of this construction is that one can obtain a
complete set of linear relations among the cycles that generate
homology of $\P_r$. We also classify moduli spaces of pentagons.
Categories:14D20, 18G55, 14H10 
