1. CMB 2016 (vol 60 pp. 63)
 Chang, Gyu Whan

Power Series Rings Over PrÃ¼fer $v$multiplication Domains, II
Let $D$ be an integral domain, $X^1(D)$ be the set of heightone
prime ideals of $D$,
$\{X_{\beta}\}$ and $\{X_{\alpha}\}$ be
two disjoint nonempty sets of indeterminates over $D$,
$D[\{X_{\beta}\}]$ be the polynomial ring over $D$, and
$D[\{X_{\beta}\}][\![\{X_{\alpha}\}]\!]_1$ be the first type
power series ring over $D[\{X_{\beta}\}]$.
Assume that $D$ is a PrÃ¼fer $v$multiplication domain (P$v$MD)
in which each proper integral $t$ideal has only finitely many
minimal prime ideals
(e.g., $t$SFT P$v$MDs, valuation domains, rings of Krull type).
Among other things, we show that if
$X^1(D) = \emptyset$ or $D_P$ is a DVR for all $P \in X^1(D)$,
then
${D[\{X_{\beta}\}][\![\{X_{\alpha}\}]\!]_1}_{D  \{0\}}$ is a
Krull domain.
We also prove that if $D$ is a $t$SFT P$v$MD, then the complete
integral closure of $D$ is a Krull domain and
ht$(M[\{X_{\beta}\}][\![\{X_{\alpha}\}]\!]_1)$ = $1$ for every
heightone maximal $t$ideal $M$ of $D$.
Keywords:Krull domain, P$v$MD, multiplicatively closed set of ideals, power series ring Categories:13A15, 13F05, 13F25 

2. CMB 2008 (vol 51 pp. 406)
 Mimouni, Abdeslam

Condensed and Strongly Condensed Domains
This paper deals with the concepts of condensed and strongly condensed
domains. By definition, an integral domain $R$ is condensed
(resp. strongly condensed) if each pair of ideals $I$ and $J$ of $R$,
$IJ=\{ab/a \in I, b \in J\}$ (resp. $IJ=aJ$ for some $a \in I$ or
$IJ=Ib$ for some $b \in J$). More precisely, we investigate the
ideal theory of condensed and strongly condensed domains in
Noetherianlike settings, especially Mori and strong Mori domains and
the transfer of these concepts to pullbacks.
Categories:13G05, 13A15, 13F05, 13E05 

3. CMB 1999 (vol 42 pp. 231)
 Rush, David E.

Generating Ideals in Rings of IntegerValued Polynomials
Let $R$ be a onedimensional locally analytically irreducible
Noetherian domain with finite residue fields. In this note it is
shown that if $I$ is a finitely generated ideal of the ring
$\Int(R)$ of integervalued polynomials such that for each $x \in
R$ the ideal $I(x) =\{f(x) \mid f \in I\}$ is strongly
$n$generated, $n \geq 2$, then $I$ is $n$generated, and some
variations of this result.
Categories:13B25, 13F20, 13F05 
