Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 13D45 ( Local cohomology [See also 14B15] )

  Expand all        Collapse all Results 1 - 13 of 13

1. CMB Online first

Zargar, Majid Rahro; Zakeri, Hossein
On flat and Gorenstein flat dimensions of local cohomology modules
Let $\mathfrak{a}$ be an ideal of a Noetherian local ring $R$ and let $C$ be a semidualizing $R$-module. For an $R$-module $X$, we denote any of the quantities $\mathfrak{d}_R X$, $\operatorname{\mathsf{Gfd}}_R X$ and $\operatorname{\mathsf{G_C-fd}}_RX$ by $\operatorname{\mathsf{T}}(X)$. Let $M$ be an $R$-module such that $\operatorname{H}_{\mathfrak{a}}^i(M)=0$ for all $i\neq n$. It is proved that if $\operatorname{\mathsf{T}}(X)\lt \infty$, then $\operatorname{\mathsf{T}}(\operatorname{H}_{\mathfrak{a}}^n(M))\leq\operatorname{\mathsf{T}}(M)+n$ and the equality holds whenever $M$ is finitely generated. With the aid of these results, among other things, we characterize Cohen-Macaulay modules, dualizing modules and Gorenstein rings.

Keywords:flat dimension, Gorenstein injective dimension, Gorenstein flat dimension, local cohomology, relative Cohen-Macaulay module, semidualizing module
Categories:13D05, 13D45, 18G20

2. CMB Online first

Dehghani-Zadeh, Fatemeh
Artinianness of Composed Graded Local Cohomology Modules
Let $R=\bigoplus_{n\geq0}R_{n}$ be a graded Noetherian ring with local base ring $(R_{0}, \mathfrak{m}_{0})$ and let $R_{+}=\bigoplus_{n\gt 0}R_{n}$, $M$ and $N$ be finitely generated graded $R$-modules and $\mathfrak{a}=\mathfrak{a}_{0}+R_{+}$ an ideal of $R$. We show that $H^{j}_{\mathfrak{b}_{0}}(H^{i}_{\mathfrak{a}}(M,N))$ and $H^{i}_{\mathfrak{a}}(M, N)/\mathfrak{b}_{0}H^{i}_{\mathfrak{a}}(M,N)$ are Artinian for some $i^{,}s$ and $j^{,}s$ with a specified property, where $\mathfrak{b}_{o}$ is an ideal of $R_{0}$ such that $\mathfrak{a}_{0}+\mathfrak{b}_{0}$ is an $\mathfrak{m}_{0}$-primary ideal.

Keywords:generalized local cohomology, Artinian, graded module
Categories:13D45, 13E10, 16W50

3. CMB 2015 (vol 58 pp. 664)

Vahidi, Alireza
Betti Numbers and Flat Dimensions of Local Cohomology Modules
Assume that $R$ is a commutative Noetherian ring with non-zero identity, $\mathfrak{a}$ is an ideal of $R$ and $X$ is an $R$--module. In this paper, we first study the finiteness of Betti numbers of local cohomology modules $\operatorname{H}_\mathfrak{a}^i(X)$. Then we give some inequalities between the Betti numbers of $X$ and those of its local cohomology modules. Finally, we present many upper bounds for the flat dimension of $X$ in terms of the flat dimensions of its local cohomology modules and an upper bound for the flat dimension of $\operatorname{H}_\mathfrak{a}^i(X)$ in terms of the flat dimensions of the modules $\operatorname{H}_\mathfrak{a}^j(X)$, $j\not= i$, and that of $X$.

Keywords:Betti numbers, flat dimensions, local cohomology modules
Categories:13D45, 13D05

4. CMB 2014 (vol 57 pp. 477)

Eghbali, Majid
On Set Theoretically and Cohomologically Complete Intersection Ideals
Let $(R,\mathfrak m)$ be a local ring and $\mathfrak a$ be an ideal of $R$. The inequalities \[ \operatorname{ht}(\mathfrak a) \leq \operatorname{cd}(\mathfrak a,R) \leq \operatorname{ara}(\mathfrak a) \leq l(\mathfrak a) \leq \mu(\mathfrak a) \] are known. It is an interesting and long-standing problem to find out the cases giving equality. Thanks to the formal grade we give conditions in which the above inequalities become equalities.

Keywords:set-theoretically and cohomologically complete intersection ideals, analytic spread, monomials, formal grade, depth of powers of ideals
Categories:13D45, 13C14

5. CMB 2012 (vol 56 pp. 491)

Bahmanpour, Kamal
A Note on Homological Dimensions of Artinian Local Cohomology Modules
Let $(R,{\frak m})$ be a non-zero commutative Noetherian local ring (with identity), $M$ be a non-zero finitely generated $R$-module. In this paper for any ${\frak p}\in {\rm Spec}(R)$ we show that $ \operatorname{{\rm injdim_{_{R_{\frak p}}}}} H^{i-\dim(R/{\frak p})}_{{\frak p}R_{\frak p}}(M_{\frak p})$ and ${\rm fd}_{R_{\p}} H^{i-\dim(R/{\frak p})}_{{\frak p}R_{\frak p}}(M_{\frak p})$ are bounded from above by $ \operatorname{{\rm injdim_{_{R}}}} H^i_{\frak m}(M)$ and $ {\rm fd}_R H^i_{\frak m}(M)$ respectively, for all integers $i\geq \dim(R/{\frak p})$.

Keywords:cofinite modules, flat dimension, injective dimension, Krull dimension, local cohomology

6. CMB 2011 (vol 55 pp. 315)

Hellus, M.
A Note on the Vanishing of Certain Local Cohomology Modules
For a finite module $M$ over a local, equicharacteristic ring $(R,m)$, we show that the well-known formula $\textrm{cd}(m,M)=\dim M$ becomes trivial if ones uses Matlis duals of local cohomology modules together with spectral sequences. We also prove a new ring-theoretic vanishing criterion for local cohomology modules.


7. CMB 2011 (vol 55 pp. 81)

Divaani-Aazar, Kamran; Hajikarimi, Alireza
Cofiniteness of Generalized Local Cohomology Modules for One-Dimensional Ideals
Let $\mathfrak a$ be an ideal of a commutative Noetherian ring $R$ and $M$ and $N$ two finitely generated $R$-modules. Our main result asserts that if $\dim R/\mathfrak a\leq 1$, then all generalized local cohomology modules $H^i_{\mathfrak a}(M,N)$ are $\mathfrak a$-cofinite.

Keywords:cofinite modules, generalized local cohomology modules, local cohomology modules
Categories:13D45, 13E05, 13E10

8. CMB 2011 (vol 55 pp. 153)

Mafi, Amir; Saremi, Hero
Artinianness of Certain Graded Local Cohomology Modules
We show that if $R=\bigoplus_{n\in\mathbb{N}_0}R_n$ is a Noetherian homogeneous ring with local base ring $(R_0,\mathfrak{m}_0)$, irrelevant ideal $R_+$, and $M$ a finitely generated graded $R$-module, then $H_{\mathfrak{m}_0R}^j(H_{R_+}^t(M))$ is Artinian for $j=0,1$ where $t=\inf\{i\in{\mathbb{N}_0}: H_{R_+}^i(M)$ is not finitely generated $\}$. Also, we prove that if $\operatorname{cd}(R_+,M)=2$, then for each $i\in\mathbb{N}_0$, $H_{\mathfrak{m}_0R}^i(H_{R_+}^2(M))$ is Artinian if and only if $H_{\mathfrak{m}_0R}^{i+2}(H_{R_+}^1(M))$ is Artinian, where $\operatorname{cd}(R_+,M)$ is the cohomological dimension of $M$ with respect to $R_+$. This improves some results of R. Sazeedeh.

Keywords:graded local cohomology, Artinian modules
Categories:13D45, 13E10

9. CMB 2011 (vol 54 pp. 619)

Dibaei, Mohammad T.; Vahidi, Alireza
Artinian and Non-Artinian Local Cohomology Modules
Let $M$ be a finite module over a commutative noetherian ring $R$. For ideals $\mathfrak{a}$ and $\mathfrak{b}$ of $R$, the relations between cohomological dimensions of $M$ with respect to $\mathfrak{a}, \mathfrak{b}$, $\mathfrak{a}\cap\mathfrak{b}$ and $\mathfrak{a}+ \mathfrak{b}$ are studied. When $R$ is local, it is shown that $M$ is generalized Cohen-Macaulay if there exists an ideal $\mathfrak{a}$ such that all local cohomology modules of $M$ with respect to $\mathfrak{a}$ have finite lengths. Also, when $r$ is an integer such that $0\leq r< \dim_R(M)$, any maximal element $\mathfrak{q}$ of the non-empty set of ideals $\{\mathfrak{a} : \textrm{H}_\mathfrak{a}^i(M) $ is not artinian for some $ i, i\geq r \}$ is a prime ideal, and all Bass numbers of $\textrm{H}_\mathfrak{q}^i(M)$ are finite for all $i\geq r$.

Keywords:local cohomology modules, cohomological dimensions, Bass numbers
Categories:13D45, 13E10

10. CMB 2010 (vol 53 pp. 667)

Khashyarmanesh, Kazem
On the Endomorphism Rings of Local Cohomology Modules
Let $R$ be a commutative Noetherian ring and $\mathfrak{a}$ a proper ideal of $R$. We show that if $n:=\operatorname{grade}_R\mathfrak{a}$, then $\operatorname{End}_R(H^n_\mathfrak{a}(R))\cong \operatorname{Ext}_R^n(H^n_\mathfrak{a}(R),R)$. We also prove that, for a nonnegative integer $n$ such that $H^i_\mathfrak{a}(R)=0$ for every $i\neq n$, if $\operatorname{Ext}_R^i(R_z,R)=0$ for all $i >0$ and $z \in \mathfrak{a}$, then $\operatorname{End}_R(H^n_\mathfrak{a}(R))$ is a homomorphic image of $R$, where $R_z$ is the ring of fractions of $R$ with respect to a multiplicatively closed subset $\{z^j \mid j \geqslant 0 \}$ of $R$. Moreover, if $\operatorname{Hom}_R(R_z,R)=0$ for all $z \in \mathfrak{a}$, then $\mu_{H^n_\mathfrak{a}(R)}$ is an isomorphism, where $\mu_{H^n_\mathfrak{a}(R)}$ is the canonical ring homomorphism $R \rightarrow \operatorname{End}_R(H^n_\mathfrak{a}(R))$.

Keywords:local cohomology module, endomorphism ring, Matlis dual functor, filter regular sequence
Categories:13D45, 13D07, 13D25

11. CMB 2010 (vol 53 pp. 577)

Asgharzadeh, Mohsen; Tousi, Massoud
A Unified Approach to Local Cohomology Modules using Serre Classes
This paper discusses the connection between the local cohomology modules and the Serre classes of $R$-modules. This connection has provided a common language for expressing some results regarding the local cohomology $R$-modules that have appeared in different papers.

Keywords:associated prime ideals, local cohomology modules, Serre class

12. CMB 2007 (vol 50 pp. 598)

Lorestani, Keivan Borna; Sahandi, Parviz; Yassemi, Siamak
Artinian Local Cohomology Modules
Let $R$ be a commutative Noetherian ring, $\fa$ an ideal of $R$ and $M$ a finitely generated $R$-module. Let $t$ be a non-negative integer. It is known that if the local cohomology module $\H^i_\fa(M)$ is finitely generated for all $i
Keywords:local cohomology module, Artinian module, reflexive module
Categories:13D45, 13E10, 13C05

13. CMB 2002 (vol 45 pp. 119)

Marcelo, Agustín; Marcelo, Félix; Rodríguez, César
The Grade Conjecture and the $S_{2}$ Condition
Sufficient conditions are given in order to prove the lowest unknown case of the grade conjecture. The proof combines vanishing results of local cohomology and the $S_{2}$ condition.

Categories:13D22, 13D45, 13D25, 13C15

© Canadian Mathematical Society, 2016 :