CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All MSC categories starting with 13D25

  Expand all        Collapse all Results 1 - 2 of 2

1. CMB 2010 (vol 53 pp. 667)

Khashyarmanesh, Kazem
On the Endomorphism Rings of Local Cohomology Modules
Let $R$ be a commutative Noetherian ring and $\mathfrak{a}$ a proper ideal of $R$. We show that if $n:=\operatorname{grade}_R\mathfrak{a}$, then $\operatorname{End}_R(H^n_\mathfrak{a}(R))\cong \operatorname{Ext}_R^n(H^n_\mathfrak{a}(R),R)$. We also prove that, for a nonnegative integer $n$ such that $H^i_\mathfrak{a}(R)=0$ for every $i\neq n$, if $\operatorname{Ext}_R^i(R_z,R)=0$ for all $i >0$ and $z \in \mathfrak{a}$, then $\operatorname{End}_R(H^n_\mathfrak{a}(R))$ is a homomorphic image of $R$, where $R_z$ is the ring of fractions of $R$ with respect to a multiplicatively closed subset $\{z^j \mid j \geqslant 0 \}$ of $R$. Moreover, if $\operatorname{Hom}_R(R_z,R)=0$ for all $z \in \mathfrak{a}$, then $\mu_{H^n_\mathfrak{a}(R)}$ is an isomorphism, where $\mu_{H^n_\mathfrak{a}(R)}$ is the canonical ring homomorphism $R \rightarrow \operatorname{End}_R(H^n_\mathfrak{a}(R))$.

Keywords:local cohomology module, endomorphism ring, Matlis dual functor, filter regular sequence
Categories:13D45, 13D07, 13D25

2. CMB 2002 (vol 45 pp. 119)

Marcelo, Agustín; Marcelo, Félix; Rodríguez, César
The Grade Conjecture and the $S_{2}$ Condition
Sufficient conditions are given in order to prove the lowest unknown case of the grade conjecture. The proof combines vanishing results of local cohomology and the $S_{2}$ condition.

Categories:13D22, 13D45, 13D25, 13C15

© Canadian Mathematical Society, 2014 : https://cms.math.ca/