CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 12 ( Field theory and polynomials )

  Expand all        Collapse all Results 1 - 19 of 19

1. CMB Online first

Aghigh, Kamal; Nikseresht, Azadeh
Characterizing Distinguished Pairs by Using Liftings of Irreducible Polynomials
Let $v$ be a henselian valuation of any rank of a field $K$ and $\overline{v}$ be the unique extension of $v$ to a fixed algebraic closure $\overline{K}$ of $K$. In 2005, it was studied properties of those pairs $(\theta,\alpha)$ of elements of $\overline{K}$ with $[K(\theta): K]\gt [K(\alpha): K]$ where $\alpha$ is an element of smallest degree over $K$ such that $$ \overline{v}(\theta-\alpha)=\sup\{\overline{v}(\theta-\beta) |\ \beta\in \overline{K}, \ [K(\beta): K]\lt [K(\theta): K]\}. $$ Such pairs are referred to as distinguished pairs. We use the concept of liftings of irreducible polynomials to give a different characterization of distinguished pairs.

Keywords:valued fields, non-Archimedean valued fields, irreducible polynomials
Categories:12J10, 12J25, 12E05

2. CMB 2014 (vol 57 pp. 538)

Ide, Joshua; Jones, Lenny
Infinite Families of $A_4$-Sextic Polynomials
In this article we develop a test to determine whether a sextic polynomial that is irreducible over $\mathbb{Q}$ has Galois group isomorphic to the alternating group $A_4$. This test does not involve the computation of resolvents, and we use this test to construct several infinite families of such polynomials.

Keywords:Galois group, sextic polynomial, inverse Galois theory, irreducible polynomial
Categories:12F10, 12F12, 11R32, 11R09

3. CMB 2014 (vol 57 pp. 735)

Cagliero, Leandro; Szechtman, Fernando
On the Theorem of the Primitive Element with Applications to the Representation Theory of Associative and Lie Algebras
We describe of all finite dimensional uniserial representations of a commutative associative (resp. abelian Lie) algebra over a perfect (resp. sufficiently large perfect) field. In the Lie case the size of the field depends on the answer to following question, considered and solved in this paper. Let $K/F$ be a finite separable field extension and let $x,y\in K$. When is $F[x,y]=F[\alpha x+\beta y]$ for some non-zero elements $\alpha,\beta\in F$?

Keywords:uniserial module, Lie algebra, associative algebra, primitive element
Categories:17B10, 13C05, 12F10, 12E20

4. CMB 2011 (vol 55 pp. 233)

Bishnoi, Anuj; Khanduja, Sudesh K.
On Algebraically Maximal Valued Fields and Defectless Extensions
Let $v$ be a Henselian Krull valuation of a field $K$. In this paper, the authors give some necessary and sufficient conditions for a finite simple extension of $(K,v)$ to be defectless. Various characterizations of algebraically maximal valued fields are also given which lead to a new proof of a result proved by Yu. L. Ershov.

Keywords:valued fields, non-Archimedean valued fields
Categories:12J10, 12J25

5. CMB 2011 (vol 55 pp. 821)

Perez-Garcia, C.; Schikhof, W. H.
New Examples of Non-Archimedean Banach Spaces and Applications
The study carried out in this paper about some new examples of Banach spaces, consisting of certain valued fields extensions, is a typical non-archimedean feature. We determine whether these extensions are of countable type, have $t$-orthogonal bases, or are reflexive. As an application we construct, for a class of base fields, a norm $\|\cdot\|$ on $c_0$, equivalent to the canonical supremum norm, without non-zero vectors that are $\|\cdot\|$-orthogonal and such that there is a multiplication on $c_0$ making $(c_0,\|\cdot\|)$ into a valued field.

Keywords:non-archimedean Banach spaces, valued field extensions, spaces of countable type, orthogonal bases
Categories:46S10, 12J25

6. CMB 2007 (vol 50 pp. 588)

Labute, John; Lemire, Nicole; Mináč, Ján; Swallow, John
Cohomological Dimension and Schreier's Formula in Galois Cohomology
Let $p$ be a prime and $F$ a field containing a primitive $p$-th root of unity. Then for $n\in \N$, the cohomological dimension of the maximal pro-$p$-quotient $G$ of the absolute Galois group of $F$ is at most $n$ if and only if the corestriction maps $H^n(H,\Fp) \to H^n(G,\Fp)$ are surjective for all open subgroups $H$ of index $p$. Using this result, we generalize Schreier's formula for $\dim_{\Fp} H^1(H,\Fp)$ to $\dim_{\Fp} H^n(H,\Fp)$.

Keywords:cohomological dimension, Schreier's formula, Galois theory, $p$-extensions, pro-$p$-groups
Categories:12G05, 12G10

7. CMB 2007 (vol 50 pp. 313)

Tzermias, Pavlos
On Cauchy--Liouville--Mirimanoff Polynomials
Let $p$ be a prime greater than or equal to 17 and congruent to 2 modulo 3. We use results of Beukers and Helou on Cauchy--Liouville--Mirimanoff polynomials to show that the intersection of the Fermat curve of degree $p$ with the line $X+Y=Z$ in the projective plane contains no algebraic points of degree $d$ with $3 \leq d \leq 11$. We prove a result on the roots of these polynomials and show that, experimentally, they seem to satisfy the conditions of a mild extension of an irreducibility theorem of P\'{o}lya and Szeg\"{o}. These conditions are \emph{conjecturally} also necessary for irreducibility.

Categories:11G30, 11R09, 12D05, 12E10

8. CMB 2006 (vol 49 pp. 113)

Ledet, Arne
$\PSL(2,2^n)$-Extensions Over $\mathbb F_{2^n}$
We construct a one-parameter generic polynomial for $\PSL(2,2^n)$ over $\mathbb F_{2^n}$.

Categories:12F12, 12E10

9. CMB 2006 (vol 49 pp. 11)

Bevelacqua, Anthony J.; Motley, Mark J.
Going-Down Results for $C_{i}$-Fields
We search for theorems that, given a $C_i$-field $K$ and a subfield $k$ of $K$, allow us to conclude that $k$ is a $C_j$-field for some $j$. We give appropriate theorems in the case $K=k(t)$ and $K = k\llp t\rrp$. We then consider the more difficult case where $K/k$ is an algebraic extension. Here we are able to prove some results, and make conjectures. We also point out the connection between these questions and Lang's conjecture on nonreal function fields over a real closed field.

Keywords:$C_i$-fields, Lang's Conjecture
Categories:12F, 14G

10. CMB 2005 (vol 48 pp. 428)

Miyamoto, Roland; Top, Jaap
Reduction of Elliptic Curves in Equal Characteristic~3 (and~2)
and fibre type for elliptic curves over discrete valued fields of equal characteristic~3. Along the same lines, partial results are obtained in equal characteristic~2.

Categories:14H52, 14K15, 11G07, 11G05, 12J10

11. CMB 2002 (vol 45 pp. 388)

Gille, Philippe
Algèbres simples centrales de degré 5 et $E_8$
As a consequence of a theorem of Rost-Springer, we establish that the cyclicity problem for central simple algebra of degree~5 on fields containg a fifth root of unity is equivalent to the study of anisotropic elements of order 5 in the split group of type~$E_8$.

Keywords:algèbres simples centrales, cohomologie galoisienne
Categories:16S35, 12G05, 20G15

12. CMB 2002 (vol 45 pp. 422)

Ledet, Arne
On the Essential Dimension of Some Semi-Direct Products
We give an upper bound on the essential dimension of the group $\mathbb{Z}/q\rtimes(\mathbb{Z}/q)^*$ over the rational numbers, when $q$ is a prime power.

Category:12F10

13. CMB 2002 (vol 45 pp. 71)

van den Dries, Lou; Kuhlmann, Franz-Viktor
Images of Additive Polynomials in $\FF_q ((t))$ Have the Optimal Approximation Property
We show that the set of values of an additive polynomial in several variables with arguments in a formal Laurent series field over a finite field has the optimal approximation property: every element in the field has a (not necessarily unique) closest approximation in this set of values. The approximation is with respect to the canonical valuation on the field. This property is elementary in the language of valued rings.

Categories:12J10, 12L12, 03C60

14. CMB 2001 (vol 44 pp. 313)

Reverter, Amadeu; Vila, Núria
Images of mod $p$ Galois Representations Associated to Elliptic Curves
We give an explicit recipe for the determination of the images associated to the Galois action on $p$-torsion points of elliptic curves. We present a table listing the image for all the elliptic curves defined over $\QQ$ without complex multiplication with conductor less than 200 and for each prime number~$p$.

Keywords:Galois groups, elliptic curves, Galois representation, isogeny
Categories:11R32, 11G05, 12F10, 14K02

15. CMB 2001 (vol 44 pp. 223)

Marshall, M.
Extending the Archimedean Positivstellensatz to the Non-Compact Case
A generalization of Schm\"udgen's Positivstellensatz is given which holds for any basic closed semialgebraic set in $\mathbb{R}^n$ (compact or not). The proof is an extension of W\"ormann's proof.

Categories:12D15, 14P10, 44A60

16. CMB 1999 (vol 42 pp. 354)

Marshall, Murray A.
A Real Holomorphy Ring without the Schmüdgen Property
A preordering $T$ is constructed in the polynomial ring $A = \R [t_1,t_2, \dots]$ (countably many variables) with the following two properties: (1)~~For each $f \in A$ there exists an integer $N$ such that $-N \le f(P) \le N$ holds for all $P \in \Sper_T(A)$. (2)~~For all $f \in A$, if $N+f, N-f \in T$ for some integer $N$, then $f \in \R$. This is in sharp contrast with the Schm\"udgen-W\"ormann result that for any preordering $T$ in a finitely generated $\R$-algebra $A$, if property~(1) holds, then for any $f \in A$, $f > 0$ on $\Sper_T(A) \Rightarrow f \in T$. Also, adjoining to $A$ the square roots of the generators of $T$ yields a larger ring $C$ with these same two properties but with $\Sigma C^2$ (the set of sums of squares) as the preordering.

Categories:12D15, 14P10, 44A60

17. CMB 1998 (vol 41 pp. 214)

Shackell, John
On a problem of Rubel concerning the set of functions satisfying all the algebraic differential equations satisfied by a given function
For two functions $f$ and $g$, define $g\ll f$ to mean that $g$ satisfies every algebraic differential equation over the constants satisfied by $f$. The order $\ll$ was introduced in one of a set of problems on algebraic differential equations given by the late Lee Rubel. Here we characterise the set of $g$ such that $g\ll f$, when $f$ is a given Liouvillian function.

Categories:34A34, 12H05

18. CMB 1998 (vol 41 pp. 3)

Anderson, David F.; Dobbs, David E.
Root closure in Integral Domains, III
{If A is a subring of a commutative ring B and if n is a positive integer, a number of sufficient conditions are given for ``A[[X]]is n-root closed in B[[X]]'' to be equivalent to ``A is n-root closed in B.'' In addition, it is shown that if S is a multiplicative submonoid of the positive integers ${\bbd P}$ which is generated by primes, then there exists a one-dimensional quasilocal integral domain A (resp., a von Neumann regular ring A) such that $S = \{ n \in {\bbd P}\mid A$ is $n$-root closed$\}$ (resp., $S = \{n \in {\bbd P}\mid A[[X]]$ is $n$-rootclosed$\}$).

Categories:13G05, 13F25, 13C15, 13F45, 13B99, 12D99

19. CMB 1997 (vol 40 pp. 81)

Movahhedi, A.; Salinier, A.
Une caractérisation des corps satisfaisant le théorème de l'axe principal
Resum\'e. On caract\'erise les corps $K$ satisfaisant le th\'eor\`eme de l'axe principal \`a l'aide de propri\'et\'es des formes carac\-t\'erisation de ces m\^emes corps due \`a Waterhouse, on retrouve \`a partir de l\`a, de fa\c{c}on \'el\'ementaire, un r\'esultat de Becker selon lequel un pro-$2$-groupe qui se r\'ealise comme groupe de Galois absolu d'un tel corps $K$ est engendr\'e par des involutions. ABSTRACT. We characterize general fields $K$, satisfying the Principal Axis Theorem, by means of properties of trace forms of the finite extensions of $K$. From this and Waterhouse's characterization of the same fields, we rediscover, in quite an elementary way, a result of Becker according to which a pro-$2$-group which occurs as the absolute Galois group of such a field $K$, is generated by

Categories:11E10, 12D15

© Canadian Mathematical Society, 2014 : https://cms.math.ca/