CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 11T23 ( Exponential sums )

  Expand all        Collapse all Results 1 - 1 of 1

1. CMB 2001 (vol 44 pp. 87)

Lieman, Daniel; Shparlinski, Igor
On a New Exponential Sum
Let $p$ be prime and let $\vartheta\in\Z^*_p$ be of multiplicative order $t$ modulo $p$. We consider exponential sums of the form $$ S(a) = \sum_{x =1}^{t} \exp(2\pi i a \vartheta^{x^2}/p) $$ and prove that for any $\varepsilon > 0$ $$ \max_{\gcd(a,p) = 1} |S(a)| = O( t^{5/6 + \varepsilon}p^{1/8}) . $$

Categories:11L07, 11T23, 11B50, 11K31, 11K38

© Canadian Mathematical Society, 2014 : https://cms.math.ca/