CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 11S99 ( None of the above, but in this section )

  Expand all        Collapse all Results 1 - 1 of 1

1. CMB 2001 (vol 44 pp. 3)

Alexandru, Victor; Popescu, Nicolae; Zaharescu, Alexandru
The Generating Degree of $\C_p$
The generating degree $\gdeg (A)$ of a topological commutative ring $A$ with $\Char A = 0$ is the cardinality of the smallest subset $M$ of $A$ for which the subring $\Z[M]$ is dense in $A$. For a prime number $p$, $\C_p$ denotes the topological completion of an algebraic closure of the field $\Q_p$ of $p$-adic numbers. We prove that $\gdeg (\C_p) = 1$, \ie, there exists $t$ in $\C_p$ such that $\Z[t]$ is dense in $\C_p$. We also compute $\gdeg \bigl( A(U) \bigr)$ where $A(U)$ is the ring of rigid analytic functions defined on a ball $U$ in $\C_p$. If $U$ is a closed ball then $\gdeg \bigl( A(U) \bigr) = 2$ while if $U$ is an open ball then $\gdeg \bigl( A(U) \bigr)$ is infinite. We show more generally that $\gdeg \bigl( A(U) \bigr)$ is finite for any {\it affinoid} $U$ in $\PP^1 (\C_p)$ and $\gdeg \bigl( A(U) \bigr)$ is infinite for any {\it wide open} subset $U$ of $\PP^1 (\C_p)$.

Category:11S99

© Canadian Mathematical Society, 2014 : https://cms.math.ca/