1. CMB 2016 (vol 59 pp. 624)
 Otsubo, Noriyuki

Homology of the Fermat Tower and Universal Measures for Jacobi Sums
We give a precise description of the homology group of the Fermat
curve as a cyclic module over a group ring.
As an application, we prove the freeness of the profinite homology
of the Fermat tower.
This allows us to define measures, an equivalent of Anderson's
adelic beta functions,
in a similar manner to Ihara's definition of $\ell$adic universal
power series for Jacobi sums.
We give a simple proof of the interpolation property using a
motivic decomposition of the Fermat curve.
Keywords:Fermat curves, IharaAnderson theory, Jacobi sums Categories:11S80, 11G15, 11R18 

2. CMB 2013 (vol 57 pp. 845)
 Lei, Antonio

Factorisation of Twovariable $p$adic $L$functions
Let $f$ be a modular form which is nonordinary at $p$. Loeffler has
recently constructed four twovariable $p$adic $L$functions
associated to $f$. In the case where $a_p=0$, he showed that, as in
the onevariable case, Pollack's plus and minus splitting applies to
these new objects. In this article, we show that such a splitting can
be generalised to the case where $a_p\ne0$ using Sprung's logarithmic
matrix.
Keywords:modular forms, padic Lfunctions, supersingular primes Categories:11S40, 11S80 
