CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 11R42 ( Zeta functions and $L$-functions of number fields [See also 11M41, 19F27] )

  Expand all        Collapse all Results 1 - 2 of 2

1. CMB Online first

Mantilla-Soler, Guillermo
Weak arithmetic equivalence
Inspired by the invariant of a number field given by its zeta function, we define the notion of weak arithmetic equivalence and show that under certain ramification hypotheses, this equivalence determines the local root numbers of the number field. This is analogous to a result of Rohrlich on the local root numbers of a rational elliptic curve. Additionally, we prove that for tame non-totally real number fields, the integral trace form is invariant under arithmetic equivalence.

Keywords:arithmeticaly equivalent number fields, root numbers
Categories:11R04, 11R42

2. CMB 2009 (vol 52 pp. 186)

Broughan, Kevin A.
Extension of the Riemann $\xi$-Function's Logarithmic Derivative Positivity Region to Near the Critical Strip
If $K$ is a number field with $n_k=[k:\mathbb{Q}]$, and $\xi_k$ the symmetrized Dedekind zeta function of the field, the inequality $$\Re\,{\frac{ \xi_k'(\sigma + {\rm i} t)}{\xi_k(\sigma + {\rm i} t)}} > \frac{ \xi_k'(\sigma)}{\xi_k(\sigma)}$$ for $t\neq 0$ is shown to be true for $\sigma\ge 1+ 8/n_k^\frac{1}{3}$ improving the result of Lagarias where the constant in the inequality was 9. In the case $k=\mathbb{Q}$ the inequality is extended to $\si\ge 1$ for all $t$ sufficiently large or small and to the region $\si\ge 1+1/(\log t -5)$ for all $t\neq 0$. This answers positively a question posed by Lagarias.

Keywords:Riemann zeta function, xi function, zeta zeros
Categories:11M26, 11R42

© Canadian Mathematical Society, 2014 : https://cms.math.ca/