Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 11P55 ( Applications of the Hardy-Littlewood method [See also 11D85] )

  Expand all        Collapse all Results 1 - 1 of 1

1. CMB 2012 (vol 56 pp. 785)

Liu, Zhixin
Small Prime Solutions to Cubic Diophantine Equations
Let $a_1, \cdots, a_9$ be non-zero integers and $n$ any integer. Suppose that $a_1+\cdots+a_9 \equiv n( \textrm{mod}\,2)$ and $(a_i, a_j)=1$ for $1 \leq i \lt j \leq 9$. In this paper we prove that (i) if $a_j$ are not all of the same sign, then the above cubic equation has prime solutions satisfying $p_j \ll |n|^{1/3}+\textrm{max}\{|a_j|\}^{14+\varepsilon};$ and (ii) if all $a_j$ are positive and $n \gg \textrm{max}\{|a_j|\}^{43+\varepsilon}$, then the cubic equation $a_1p_1^3+\cdots +a_9p_9^3=n$ is soluble in primes $p_j$. This result is the extension of the linear and quadratic relative problems.

Keywords:small prime, Waring-Goldbach problem, circle method
Categories:11P32, 11P05, 11P55

© Canadian Mathematical Society, 2014 :