location:  Publications → journals
Search results

Search: MSC category 11M35 ( Hurwitz and Lerch zeta functions )

 Expand all        Collapse all Results 1 - 2 of 2

1. CMB 2007 (vol 50 pp. 11)

Borwein, David; Borwein, Jonathan
 van der Pol Expansions of L-Series We provide concise series representations for various L-series integrals. Different techniques are needed below and above the abscissa of absolute convergence of the underlying L-series. Keywords:Dirichlet series integrals, Hurwitz zeta functions, Plancherel theorems, L-seriesCategories:11M35, 11M41, 30B50

2. CMB 2005 (vol 48 pp. 333)

Alzer, Horst
 Monotonicity Properties of the Hurwitz Zeta Function Let $$\zeta(s,x)=\sum_{n=0}^{\infty}\frac{1}{(n+x)^s} \quad{(s>1,\, x>0)}$$ be the Hurwitz zeta function and let $$Q(x)=Q(x;\alpha,\beta;a,b)=\frac{(\zeta(\alpha,x))^a}{(\zeta(\beta,x))^b},$$ where $\alpha, \beta>1$ and $a,b>0$ are real numbers. We prove: (i) The function $Q$ is decreasing on $(0,\infty)$ if{}f $\alpha a-\beta b\geq \max(a-b,0)$. (ii) $Q$ is increasing on $(0,\infty)$ if{}f $\alpha a-\beta b\leq \min(a-b,0)$. An application of part (i) reveals that for all $x>0$ the function $s\mapsto [(s-1)\zeta(s,x)]^{1/(s-1)}$ is decreasing on $(1,\infty)$. This settles a conjecture of Bastien and Rogalski. Categories:11M35, 26D15
 top of page | contact us | privacy | site map |