Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 11K16 ( Normal numbers, radix expansions, Pisot numbers, Salem numbers, good lattice points, etc. [See also 11A63] )

  Expand all        Collapse all Results 1 - 1 of 1

1. CMB 1998 (vol 41 pp. 125)

Boyd, David W.
Uniform approximation to Mahler's measure in several variables
If $f(x_1,\dots,x_k)$ is a polynomial with complex coefficients, the Mahler measure of $f$, $M(f)$ is defined to be the geometric mean of $|f|$ over the $k$-torus $\Bbb T^k$. We construct a sequence of approximations $M_n(f)$ which satisfy $-d2^{-n}\log 2 + \log M_n(f) \le \log M(f) \le \log M_n(f)$. We use these to prove that $M(f)$ is a continuous function of the coefficients of $f$ for polynomials of fixed total degree $d$. Since $M_n(f)$ can be computed in a finite number of arithmetic operations from the coefficients of $f$ this also demonstrates an effective (but impractical) method for computing $M(f)$ to arbitrary accuracy.

Categories:11R06, 11K16, 11Y99

© Canadian Mathematical Society, 2014 :