Search results
Search: MSC category 11K16
( Normal numbers, radix expansions, Pisot numbers, Salem numbers, good lattice points, etc. [See also 11A63] )
1. CMB 2014 (vol 58 pp. 160)
 Pollack, Paul; Vandehey, Joseph

Some Normal Numbers Generated by Arithmetic Functions
Let $g \geq 2$. A real number is said to be $g$normal if its base $g$ expansion contains every finite sequence of digits with the expected limiting frequency. Let $\phi$ denote Euler's totient function, let $\sigma$ be the sumofdivisors function, and let $\lambda$ be Carmichael's lambdafunction. We show that if $f$ is any function formed by composing $\phi$, $\sigma$, or $\lambda$, then the number
\[ 0. f(1) f(2) f(3) \dots \]
obtained by concatenating the base $g$ digits of successive $f$values is $g$normal. We also prove the same result if the inputs $1, 2, 3, \dots$ are replaced with the primes $2, 3, 5, \dots$. The proof is an adaptation of a method introduced by Copeland and ErdÅs in 1946 to prove the $10$normality of $0.235711131719\ldots$.
Keywords:normal number, Euler function, sumofdivisors function, Carmichael lambdafunction, Champernowne's number Categories:11K16, 11A63, 11N25, 11N37 

2. CMB Online first
 Pollack, Paul; Vandehey, Joseph

Some normal numbers generated by arithmetic functions
Let $g \geq 2$. A real number is said to be $g$normal if its base $g$ expansion contains every finite sequence of digits with the expected limiting frequency. Let $\phi$ denote Euler's totient function, let $\sigma$ be the sumofdivisors function, and let $\lambda$ be Carmichael's lambdafunction. We show that if $f$ is any function formed by composing $\phi$, $\sigma$, or $\lambda$, then the number
\[ 0. f(1) f(2) f(3) \dots \]
obtained by concatenating the base $g$ digits of successive $f$values is $g$normal. We also prove the same result if the inputs $1, 2, 3, \dots$ are replaced with the primes $2, 3, 5, \dots$. The proof is an adaptation of a method introduced by Copeland and ErdÅs in 1946 to prove the $10$normality of $0.235711131719\ldots$.
Keywords:normal number, Euler function, sumofdivisors function, Carmichael lambdafunction, Champernowne's number Categories:11K16, 11A63, 11N25, 11N37 

3. CMB 1998 (vol 41 pp. 125)
 Boyd, David W.

Uniform approximation to Mahler's measure in several variables
If $f(x_1,\dots,x_k)$ is a polynomial with complex coefficients, the Mahler measure
of $f$, $M(f)$ is defined to be the geometric mean of $f$ over the $k$torus
$\Bbb T^k$. We construct a sequence of approximations $M_n(f)$ which satisfy
$d2^{n}\log 2 + \log M_n(f) \le \log M(f) \le \log M_n(f)$. We use these to prove
that $M(f)$ is a continuous function of the coefficients of $f$ for polynomials
of fixed total degree $d$. Since $M_n(f)$ can be computed in a finite number
of arithmetic operations from the coefficients of $f$ this also demonstrates
an effective (but impractical) method for computing $M(f)$ to arbitrary
accuracy.
Categories:11R06, 11K16, 11Y99 
