Expand all Collapse all | Results 1 - 1 of 1 |
1. CMB 1998 (vol 41 pp. 125)
Uniform approximation to Mahler's measure in several variables If $f(x_1,\dots,x_k)$ is a polynomial with complex coefficients, the Mahler measure
of $f$, $M(f)$ is defined to be the geometric mean of $|f|$ over the $k$-torus
$\Bbb T^k$. We construct a sequence of approximations $M_n(f)$ which satisfy
$-d2^{-n}\log 2 + \log M_n(f) \le \log M(f) \le \log M_n(f)$. We use these to prove
that $M(f)$ is a continuous function of the coefficients of $f$ for polynomials
of fixed total degree $d$. Since $M_n(f)$ can be computed in a finite number
of arithmetic operations from the coefficients of $f$ this also demonstrates
an effective (but impractical) method for computing $M(f)$ to arbitrary
accuracy.
Categories:11R06, 11K16, 11Y99 |