1. CMB 2007 (vol 50 pp. 409)
2. CMB 2003 (vol 46 pp. 149)
 Scherk, John

The Ramification Polygon for Curves over a Finite Field
A Newton polygon is introduced for a ramified point of a Galois
covering of curves over a finite field. It is shown to be determined
by the sequence of higher ramification groups of the point. It gives
a blowing up of the wildly ramified part which separates the branches
of the curve. There is also a connection with local reciprocity.
Category:11G20 

3. CMB 1999 (vol 42 pp. 78)
 González, Josep

Fermat Jacobians of Prime Degree over Finite Fields
We study the splitting of Fermat Jacobians of prime
degree $\ell$ over an algebraic closure of a finite field of
characteristic $p$ not equal to $\ell$. We prove that their
decomposition is determined by the residue degree of $p$ in the
cyclotomic field of the $\ell$th roots of unity. We provide a
numerical criterion that allows to compute the absolutely simple
subvarieties and their multiplicity in the Fermat Jacobian.
Categories:11G20, 14H40 
