location:  Publications → journals
Search results

Search: MSC category 11F20 ( Dedekind eta function, Dedekind sums )

 Expand all        Collapse all Results 1 - 2 of 2

1. CMB 2015 (vol 58 pp. 858)

Williams, Kenneth S.
 Ternary Quadratic Forms and Eta Quotients Let $\eta(z)$ $(z \in \mathbb{C},\;\operatorname{Im}(z)\gt 0)$ denote the Dedekind eta function. We use a recent product-to-sum formula in conjunction with conditions for the non-representability of integers by certain ternary quadratic forms to give explicitly 10 eta quotients $f(z):=\eta^{a(m_1)}(m_1 z)\cdots \eta^{{a(m_r)}}(m_r z)=\sum_{n=1}^{\infty}c(n)e^{2\pi i nz},\quad z \in \mathbb{C},\;\operatorname{Im}(z)\gt 0,$ such that the Fourier coefficients $c(n)$ vanish for all positive integers $n$ in each of infinitely many non-overlapping arithmetic progressions. For example, it is shown that for $f(z)=\eta^4(z)\eta^{9}(4z)\eta^{-2}(8z)$ we have $c(n)=0$ for all $n$ in each of the arithmetic progressions $\{16k+14\}_{k \geq 0}$, $\{64k+56\}_{k \geq 0}$, $\{256k+224\}_{k \geq 0}$, $\{1024k+896\}_{k \geq 0}$, $\ldots$. Keywords:Dedekind eta function, eta quotient, ternary quadratic forms, vanishing of Fourier coefficients, product-to-sum formulaCategories:11F20, 11E20, 11E25

2. CMB 2011 (vol 55 pp. 67)

Cummins, C. J.; Duncan, J. F.
 An $E_8$ Correspondence for Multiplicative Eta-Products We describe an $E_8$ correspondence for the multiplicative eta-products of weight at least $4$. Keywords:We describe an E8 correspondence for the multiplicative eta-products of weight at leastÂ 4.Categories:11F20, 11F12, 17B60
 top of page | contact us | privacy | site map |