CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 11F11 ( Holomorphic modular forms of integral weight )

  Expand all        Collapse all Results 1 - 9 of 9

1. CMB 2012 (vol 56 pp. 520)

Elbasraoui, Abdelkrim; Sebbar, Abdellah
Equivariant Forms: Structure and Geometry
In this paper we study the notion of equivariant forms introduced in the authors' previous works. In particular, we completely classify all the equivariant forms for a subgroup of $\operatorname{SL}_2(\mathbb{Z})$ by means of the cross-ratio, the weight 2 modular forms, the quasimodular forms, as well as differential forms of a Riemann surface and sections of a canonical line bundle.

Keywords:equivariant forms, modular forms, Schwarz derivative, cross-ratio, differential forms
Category:11F11

2. CMB 2011 (vol 55 pp. 400)

Sebbar, Abdellah; Sebbar, Ahmed
Eisenstein Series and Modular Differential Equations
The purpose of this paper is to solve various differential equations having Eisenstein series as coefficients using various tools and techniques. The solutions are given in terms of modular forms, modular functions, and equivariant forms.

Keywords:differential equations, modular forms, Schwarz derivative, equivariant forms
Categories:11F11, 34M05

3. CMB 2009 (vol 52 pp. 481)

Alaca, Ay\c{s}e; Alaca, \c{S}aban; Williams, Kenneth S.
Some Infinite Products of Ramanujan Type
In his ``lost'' notebook, Ramanujan stated two results, which are equivalent to the identities \[ \prod_{n=1}^{\infty} \frac{(1-q^n)^5}{(1-q^{5n})} =1-5\sum_{n=1}^{\infty}\Big( \sum_{d \mid n} \qu{5}{d} d \Big) q^n \] and \[ q\prod_{n=1}^{\infty} \frac{(1-q^{5n})^5}{(1-q^{n})} =\sum_{n=1}^{\infty}\Big( \sum_{d \mid n} \qu{5}{n/d} d \Big) q^n. \] We give several more identities of this type.

Keywords:Power series expansions of certain infinite products
Categories:11E25, 11F11, 11F27, 30B10

4. CMB 2006 (vol 49 pp. 526)

Choi, So Young
The Values of Modular Functions and Modular Forms
Let $\Gamma_0$ be a Fuchsian group of the first kind of genus zero and $\Gamma$ be a subgroup of $\Gamma_0$ of finite index of genus zero. We find universal recursive relations giving the $q_{r}$-series coefficients of $j_0$ by using those of the $q_{h_{s}}$-series of $j$, where $j$ is the canonical Hauptmodul for $\Gamma$ and $j_0$ is a Hauptmodul for $\Gamma_0$ without zeros on the complex upper half plane $\mathfrak{H}$ (here $q_{\ell} := e^{2 \pi i z / \ell}$). We find universal recursive formulas for $q$-series coefficients of any modular form on $\Gamma_0^{+}(p)$ in terms of those of the canonical Hauptmodul $j_p^{+}$.

Categories:10D12, 11F11

5. CMB 2006 (vol 49 pp. 428)

Lee, Min Ho
Vector-Valued Modular Forms of Weight Two Associated With Jacobi-Like Forms
We construct vector-valued modular forms of weight 2 associated to Jacobi-like forms with respect to a symmetric tensor representation of $\G$ by using the method of Kuga and Shimura as well as the correspondence between Jacobi-like forms and sequences of modular forms. As an application, we obtain vector-valued modular forms determined by theta functions and by pseudodifferential operators.

Categories:11F11, 11F50

6. CMB 2006 (vol 49 pp. 296)

Sch"utt, Matthias
On the Modularity of Three Calabi--Yau Threefolds With Bad Reduction at 11
This paper investigates the modularity of three non-rigid Calabi--Yau threefolds with bad reduction at 11. They are constructed as fibre products of rational elliptic surfaces, involving the modular elliptic surface of level 5. Their middle $\ell$-adic cohomology groups are shown to split into two-dimensional pieces, all but one of which can be interpreted in terms of elliptic curves. The remaining pieces are associated to newforms of weight 4 and level 22 or 55, respectively. For this purpose, we develop a method by Serre to compare the corresponding two-dimensional 2-adic Galois representations with uneven trace. Eventually this method is also applied to a self fibre product of the Hesse-pencil, relating it to a newform of weight 4 and level 27.

Categories:14J32, 11F11, 11F23, 20C12

7. CMB 2005 (vol 48 pp. 535)

Ellenberg, Jordan S.
On the Error Term in Duke's Estimate for the Average Special Value of $L$-Functions
Let $\FF$ be an orthonormal basis for weight $2$ cusp forms of level $N$. We show that various weighted averages of special values $L(f \tensor \chi, 1)$ over $f \in \FF$ are equal to $4 \pi c + O(N^{-1 + \epsilon})$, where $c$ is an explicit nonzero constant. A previous result of Duke gives an error term of $O(N^{-1/2}\log N)$.

Categories:11F67, 11F11

8. CMB 2002 (vol 45 pp. 257)

Lee, Min Ho
Modular Forms Associated to Theta Functions
We use the theory of Jacobi-like forms to construct modular forms for a congruence subgroup of $\SL(2,\mathbb{R})$ which can be expressed as linear combinations of products of certain theta functions.

Categories:11F11, 11F27, 33D10

9. CMB 1999 (vol 42 pp. 129)

Baker, Andrew
Hecke Operations and the Adams $E_2$-Term Based on Elliptic Cohomology
Hecke operators are used to investigate part of the $\E_2$-term of the Adams spectral sequence based on elliptic homology. The main result is a derivation of $\Ext^1$ which combines use of classical Hecke operators and $p$-adic Hecke operators due to Serre.

Keywords:Adams spectral sequence, elliptic cohomology, Hecke operators
Categories:55N20, 55N22, 55T15, 11F11, 11F25

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/