Expand all Collapse all | Results 1 - 4 of 4 |
1. CMB 2011 (vol 56 pp. 161)
An Extension of the Dirichlet Density for Sets of Gaussian Integers Several measures for the density of sets of integers have been proposed,
such as the asymptotic density, the Schnirelmann density, and the Dirichlet density. There has been some work in the literature on extending some of these concepts of density to higher dimensional sets of integers. In this work, we propose an extension of the Dirichlet density for sets of Gaussian integers and
investigate some of its properties.
Keywords:Gaussian integers, Dirichlet density Categories:11B05, 11M99, 11N99 |
2. CMB 2009 (vol 53 pp. 204)
Corrigendum for "Consecutive large gaps in sequences defined by multiplicative constraints" No abstract.
Categories:11N25, 11B05 |
3. CMB 2008 (vol 51 pp. 172)
Consecutive Large Gaps in Sequences Defined by Multiplicative Constraints In this paper we obtain quantitative results on the occurrence of
consecutive large gaps between $B$-free numbers, and consecutive
large gaps between nonzero Fourier coefficients of a class of
newforms without complex multiplication.
Keywords:$B$-free numbers, consecutive gaps Categories:11N25, 11B05 |
4. CMB 2001 (vol 44 pp. 12)
A Technique of Studying Sums of Central Cantor Sets This paper is concerned with the structure of the arithmetic sum of a
finite number of central Cantor sets. The technique used to study this
consists of a duality between central Cantor sets and sets of subsums
of certain infinite series. One consequence is that the sum of a finite
number of central Cantor sets is one of the following: a finite union
of closed intervals, homeomorphic to the Cantor ternary set or an
$M$-Cantorval.
Category:11B05 |