Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 11A55 ( Continued fractions {For approximation results, see 11J70} [See also 11K50, 30B70, 40A15] )

  Expand all        Collapse all Results 1 - 8 of 8

1. CMB Online first

Benamar, H.; Chandoul, A.; Mkaouar, M.
On the continued fraction expansion of fixed period in finite fields
The Chowla conjecture states that, if $t$ is any given positive integer, there are infinitely many prime positive integers $N$ such that $\operatorname{Per} (\sqrt{N})=t$, where $\operatorname{Per} (\sqrt{N})$ is the period length of the continued fraction expansion for $\sqrt{N}$. C. Friesen proved that, for any $k\in \mathbb{N}$, there are infinitely many square-free integers $N$, where the continued fraction expansion of $\sqrt{N}$ has a fixed period. In this paper, we describe all polynomials $Q\in \mathbb{F}_q[X] $ for which the continued fraction expansion of $\sqrt {Q}$ has a fixed period, also we give a lower bound of the number of monic, non-squares polynomials $Q$ such that $\deg Q= 2d$ and $ Per \sqrt {Q}=t$.

Keywords:continued fractions, polynomials, formal power series
Categories:11A55, 13J05

2. CMB 2012 (vol 56 pp. 570)

Hoang, Giabao; Ressler, Wendell
Conjugacy Classes and Binary Quadratic Forms for the Hecke Groups
In this paper we give a lower bound with respect to block length for the trace of non-elliptic conjugacy classes of the Hecke groups. One consequence of our bound is that there are finitely many conjugacy classes of a given trace in any Hecke group. We show that another consequence of our bound is that class numbers are finite for related hyperbolic \( \mathbb{Z}[\lambda] \)-binary quadratic forms. We give canonical class representatives and calculate class numbers for some classes of hyperbolic \( \mathbb{Z}[\lambda] \)-binary quadratic forms.

Keywords:Hecke groups, conjugacy class, quadratic forms
Categories:11F06, 11E16, 11A55

3. CMB 2011 (vol 56 pp. 258)

Chandoul, A.; Jellali, M.; Mkaouar, M.
The Smallest Pisot Element in the Field of Formal Power Series Over a Finite Field
Dufresnoy and Pisot characterized the smallest Pisot number of degree $n \geq 3$ by giving explicitly its minimal polynomial. In this paper, we translate Dufresnoy and Pisot's result to the Laurent series case. The aim of this paper is to prove that the minimal polynomial of the smallest Pisot element (SPE) of degree $n$ in the field of formal power series over a finite field is given by $P(Y)=Y^{n}-\alpha XY^{n-1}-\alpha^n,$ where $\alpha$ is the least element of the finite field $\mathbb{F}_{q}\backslash\{0\}$ (as a finite total ordered set). We prove that the sequence of SPEs of degree $n$ is decreasing and converges to $\alpha X.$ Finally, we show how to obtain explicit continued fraction expansion of the smallest Pisot element over a finite field.

Keywords:Pisot element, continued fraction, Laurent series, finite fields
Categories:11A55, 11D45, 11D72, 11J61, 11J66

4. CMB 2011 (vol 55 pp. 774)

Mollin, R. A.; Srinivasan, A.
Pell Equations: Non-Principal Lagrange Criteria and Central Norms
We provide a criterion for the central norm to be any value in the simple continued fraction expansion of $\sqrt{D}$ for any non-square integer $D>1$. We also provide a simple criterion for the solvability of the Pell equation $x^2-Dy^2=-1$ in terms of congruence conditions modulo $D$.

Keywords:Pell's equation, continued fractions, central norms
Categories:11D09, 11A55, 11R11, 11R29

5. CMB 2005 (vol 48 pp. 121)

Mollin, R. A.
Necessary and Sufficient Conditions for the Central Norm to Equal $2^h$ in the Simple Continued Fraction Expansion of $\sqrt{2^hc}$ for Any Odd $c>1$
We look at the simple continued fraction expansion of $\sqrt{D}$ for any $D=2^hc $ where $c>1$ is odd with a goal of determining necessary and sufficient conditions for the central norm (as determined by the infrastructure of the underlying real quadratic order therein) to be $2^h$. At the end of the paper, we also address the case where $D=c$ is odd and the central norm of $\sqrt{D}$ is equal to $2$.

Keywords:quadratic Diophantine equations, simple continued fractions,, norms of ideals, infrastructure of real quadratic fields
Categories:11A55, 11D09, 11R11

6. CMB 2004 (vol 47 pp. 12)

Burger, Edward B.
On Newton's Method and Rational Approximations to Quadratic Irrationals
In 1988 Rieger exhibited a differentiable function having a zero at the golden ratio\break $(-1+\sqrt5)/2$ for which when Newton's method for approximating roots is applied with an initial value $x_0=0$, all approximates are so-called ``best rational approximates''---in this case, of the form $F_{2n}/F_{2n+1}$, where $F_n$ denotes the $n$-th Fibonacci number. Recently this observation was extended by Komatsu to the class of all quadratic irrationals whose continued fraction expansions have period length $2$. Here we generalize these observations by producing an analogous result for all quadratic irrationals and thus provide an explanation for these phenomena.

Categories:11A55, 11B37

7. CMB 2002 (vol 45 pp. 428)

Mollin, R. A.
Criteria for Simultaneous Solutions of $X^2 - DY^2 = c$ and $x^2 - Dy^2 = -c$
The purpose of this article is to provide criteria for the simultaneous solvability of the Diophantine equations $X^2 - DY^2 = c$ and $x^2 - Dy^2 = -c$ when $c \in \mathbb{Z}$, and $D \in \mathbb{N}$ is not a perfect square. This continues work in \cite{me}--\cite{alfnme}.

Keywords:continued fractions, Diophantine equations, fundamental units, simultaneous solutions
Categories:11A55, 11R11, 11D09

8. CMB 1998 (vol 41 pp. 86)

Lubinsky, D. S.
On \lowercase{$q$}-exponential functions for \lowercase{$|q| =1$}
We discuss the $q$-exponential functions $e_q$, $E_q$ for $q$ on the unit circle, especially their continuity in $q$, and analogues of the limit relation $ \lim_{q\rightarrow 1}e_q((1-q)z)=e^z$.

Keywords:$q$-series, $q$-exponentials
Categories:33D05, 11A55, 11K70

© Canadian Mathematical Society, 2015 :