Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 11 ( Number theory )

  Expand all        Collapse all Results 101 - 125 of 223

101. CMB 2008 (vol 51 pp. 100)

Petkov, Vesselin
Dynamical Zeta Function for Several Strictly Convex Obstacles
The behavior of the dynamical zeta function $Z_D(s)$ related to several strictly convex disjoint obstacles is similar to that of the inverse $Q(s) = \frac{1}{\zeta(s)}$ of the Riemann zeta function $\zeta(s)$. Let $\Pi(s)$ be the series obtained from $Z_D(s)$ summing only over primitive periodic rays. In this paper we examine the analytic singularities of $Z_D(s)$ and $\Pi(s)$ close to the line $\Re s = s_2$, where $s_2$ is the abscissa of absolute convergence of the series obtained by the second iterations of the primitive periodic rays. We show that at least one of the functions $Z_D(s), \Pi(s)$ has a singularity at $s = s_2$.

Keywords:dynamical zeta function, periodic rays
Categories:11M36, 58J50

102. CMB 2007 (vol 50 pp. 594)

Laubie, François
Ramification des groupes abéliens d'automorphismes des corps $\mathbb F_q(\!(X)\!)$
Soit $q$ une puissance d'un nombre premier $p$. Dans cette note on \'etablit la g\'en\'eralisation suivante d'un th\'eor\`eme de Wintenberger : tout sous-groupe ab\'elien ferm\'e du groupe des $\mathbb F_q$-auto\-morphismes continus du corps des s\'eries formelles $\mathbb F_q(\!(X)\!)$ muni de sa filtration de ramification est un groupe filtr\'e isomorphe au groupe de Galois d'une extension ab\'elienne d'un corps local {\`a} corps r\'esiduel $\mathbb F_q$, filtr\'e par les groupes de ramification de l'extension en num\'erotation inf\'erieure.


103. CMB 2007 (vol 50 pp. 486)

Cynk, S.; Hulek, K.
Higher-Dimensional Modular\\Calabi--Yau Manifolds
We construct several examples of higher-dimensional Calabi--Yau manifolds and prove their modularity.

Categories:14G10, 14J32, 11G40

104. CMB 2007 (vol 50 pp. 399)

Komornik, Vilmos; Loreti, Paola
Expansions in Complex Bases
Beginning with a seminal paper of R\'enyi, expansions in noninteger real bases have been widely studied in the last forty years. They turned out to be relevant in various domains of mathematics, such as the theory of finite automata, number theory, fractals or dynamical systems. Several results were extended by Dar\'oczy and K\'atai for expansions in complex bases. We introduce an adaptation of the so-called greedy algorithm to the complex case, and we generalize one of their main theorems.

Keywords:non-integer bases, greedy expansions, beta-expansions
Categories:11A67, 11A63, 11B85

105. CMB 2007 (vol 50 pp. 334)

Chiang-Hsieh, Hung-Jen; Yang, Yifan
Determination of Hauptmoduls and Construction of Abelian Extensions of Quadratic Number Fields
We obtain Hauptmoduls of genus zero congruence subgroups of the type $\Gamma_0^+(p):=\linebreak\Gamma_0(p)+w_p$, where $p$ is a prime and $w_p$ is the Atkin--Lehner involution. We then use the Hauptmoduls, along with modular functions on $\Gamma_1(p)$ to construct families of cyclic extensions of quadratic number fields. Further examples of cyclic extension of bi-quadratic and tri-quadratic number fields are also given.

Categories:11F03, 11G16, 11R20

106. CMB 2007 (vol 50 pp. 409)

Luca, Florian; Shparlinski, Igor E.
Discriminants of Complex Multiplication Fields of Elliptic Curves over Finite Fields
We show that, for most of the elliptic curves $\E$ over a prime finite field $\F_p$ of $p$ elements, the discriminant $D(\E)$ of the quadratic number field containing the endomorphism ring of $\E$ over $\F_p$ is sufficiently large. We also obtain an asymptotic formula for the number of distinct quadratic number fields generated by the endomorphism rings of all elliptic curves over $\F_p$.

Categories:11G20, 11N32, 11R11

107. CMB 2007 (vol 50 pp. 284)

McIntosh, Richard J.
Second Order Mock Theta Functions
In his last letter to Hardy, Ramanujan defined 17 functions $F(q)$, where $|q|<1$. He called them mock theta functions, because as $q$ radially approaches any point $e^{2\pi ir}$ ($r$ rational), there is a theta function $F_r(q)$ with $F(q)-F_r(q)=O(1)$. In this paper we establish the relationship between two families of mock theta functions.

Keywords:$q$-series, mock theta function, Mordell integral
Categories:11B65, 33D15

108. CMB 2007 (vol 50 pp. 313)

Tzermias, Pavlos
On Cauchy--Liouville--Mirimanoff Polynomials
Let $p$ be a prime greater than or equal to 17 and congruent to 2 modulo 3. We use results of Beukers and Helou on Cauchy--Liouville--Mirimanoff polynomials to show that the intersection of the Fermat curve of degree $p$ with the line $X+Y=Z$ in the projective plane contains no algebraic points of degree $d$ with $3 \leq d \leq 11$. We prove a result on the roots of these polynomials and show that, experimentally, they seem to satisfy the conditions of a mild extension of an irreducibility theorem of P\'{o}lya and Szeg\"{o}. These conditions are \emph{conjecturally} also necessary for irreducibility.

Categories:11G30, 11R09, 12D05, 12E10

109. CMB 2007 (vol 50 pp. 191)

Drungilas, Paulius; Dubickas, Artūras
Every Real Algebraic Integer Is a Difference of Two Mahler Measures
We prove that every real algebraic integer $\alpha$ is expressible by a difference of two Mahler measures of integer polynomials. Moreover, these polynomials can be chosen in such a way that they both have the same degree as that of $\alpha$, say $d$, one of these two polynomials is irreducible and another has an irreducible factor of degree $d$, so that $\alpha=M(P)-bM(Q)$ with irreducible polynomials $P, Q\in \mathbb Z[X]$ of degree $d$ and a positive integer $b$. Finally, if $d \leqslant 3$, then one can take $b=1$.

Keywords:Mahler measures, Pisot numbers, Pell equation, $abc$-conjecture
Categories:11R04, 11R06, 11R09, 11R33, 11D09

110. CMB 2007 (vol 50 pp. 196)

Fernández, Julio; González, Josep; Lario, Joan-C.
Plane Quartic Twists of $X(5,3)$
Given an odd surjective Galois representation $\varrho\from \G_\Q\to\PGL_2(\F_3)$ and a positive integer~$N$, there exists a twisted modular curve $X(N,3)_\varrho$ defined over $\Q$ whose rational points classify the quadratic $\Q$-curves of degree $N$ realizing~$\varrho$. This paper gives a method to provide an explicit plane quartic model for this curve in the genus-three case $N=5$.

Categories:11F03, 11F80, 14G05

111. CMB 2007 (vol 50 pp. 215)

Kloosterman, Remke
Elliptic $K3$ Surfaces with Geometric Mordell--Weil Rank $15$
We prove that the elliptic surface $y^2=x^3+2(t^8+14t^4+1)x+4t^2(t^8+6t^4+1)$ has geometric Mordell--Weil rank $15$. This completes a list of Kuwata, who gave explicit examples of elliptic $K3$-surfaces with geometric Mordell--Weil ranks $0,1,\dots, 14, 16, 17, 18$.

Categories:14J27, 14J28, 11G05

112. CMB 2007 (vol 50 pp. 234)

Kuo, Wentang
A Remark on a Modular Analogue of the Sato--Tate Conjecture
The original Sato--Tate Conjecture concerns the angle distribution of the eigenvalues arising from non-CM elliptic curves. In this paper, we formulate a modular analogue of the Sato--Tate Conjecture and prove that the angles arising from non-CM holomorphic Hecke eigenforms with non-trivial central characters are not distributed with respect to the Sate--Tate measure for non-CM elliptic curves. Furthermore, under a reasonable conjecture, we prove that the expected distribution is uniform.

Keywords:$L$-functions, Elliptic curves, Sato--Tate
Categories:11F03, 11F25

113. CMB 2007 (vol 50 pp. 11)

Borwein, David; Borwein, Jonathan
van der Pol Expansions of L-Series
We provide concise series representations for various L-series integrals. Different techniques are needed below and above the abscissa of absolute convergence of the underlying L-series.

Keywords:Dirichlet series integrals, Hurwitz zeta functions, Plancherel theorems, L-series
Categories:11M35, 11M41, 30B50

114. CMB 2007 (vol 50 pp. 71)

Gurak, S.
Polynomials for Kloosterman Sums
Fix an integer $m>1$, and set $\zeta_{m}=\exp(2\pi i/m)$. Let ${\bar x}$ denote the multiplicative inverse of $x$ modulo $m$. The Kloosterman sums $R(d)=\sum_{x} \zeta_{m}^{x + d{\bar x}}$, $1 \leq d \leq m$, $(d,m)=1$, satisfy the polynomial $$f_{m}(x) = \prod_{d} (x-R(d)) = x^{\phi(m)} +c_{1} x^{\phi(m)-1} + \dots + c_{\phi(m)},$$ where the sum and product are taken over a complete system of reduced residues modulo $m$. Here we give a natural factorization of $f_{m}(x)$, namely, $$ f_{m}(x) = \prod_{\sigma} f_{m}^{(\sigma)}(x),$$ where $\sigma$ runs through the square classes of the group ${\bf Z}_{m}^{*}$ of reduced residues modulo $m$. Questions concerning the explicit determination of the factors $f_{m}^{(\sigma)}(x)$ (or at least their beginning coefficients), their reducibility over the rational field ${\bf Q}$ and duplication among the factors are studied. The treatment is similar to what has been done for period polynomials for finite fields.

Categories:11L05, 11T24

115. CMB 2007 (vol 50 pp. 158)

Tipu, Vicentiu
A Note on Giuga's Conjecture
Let $G(X)$ denote the number of positive composite integers $n$ satisfying $\sum_{j=1}^{n-1}j^{n-1}\equiv -1 \tmod{n}$. Then $G(X)\ll X^{1/2}\log X$ for sufficiently large $X$.


116. CMB 2006 (vol 49 pp. 481)

Browkin, J.; Brzeziński, J.
On Sequences of Squares with Constant Second Differences
The aim of this paper is to study sequences of integers for which the second differences between their squares are constant. We show that there are infinitely many nontrivial monotone sextuples having this property and discuss some related problems.

Keywords:sequence of squares, second difference, elliptic curve
Categories:11B83, 11Y85, 11D09

117. CMB 2006 (vol 49 pp. 560)

Luijk, Ronald van
A K3 Surface Associated With Certain Integral Matrices Having Integral Eigenvalues
In this article we will show that there are infinitely many symmetric, integral $3 \times 3$ matrices, with zeros on the diagonal, whose eigenvalues are all integral. We will do this by proving that the rational points on a certain non-Kummer, singular K3 surface are dense. We will also compute the entire Néron-Severi group of this surface and find all low degree curves on it.

Keywords:symmetric matrices, eigenvalues, elliptic surfaces, K3 surfaces, Néron--Severi group, rational curves, Diophantine equations, arithmetic geometry, algebraic geometry, number theory
Categories:14G05, 14J28, 11D41

118. CMB 2006 (vol 49 pp. 526)

Choi, So Young
The Values of Modular Functions and Modular Forms
Let $\Gamma_0$ be a Fuchsian group of the first kind of genus zero and $\Gamma$ be a subgroup of $\Gamma_0$ of finite index of genus zero. We find universal recursive relations giving the $q_{r}$-series coefficients of $j_0$ by using those of the $q_{h_{s}}$-series of $j$, where $j$ is the canonical Hauptmodul for $\Gamma$ and $j_0$ is a Hauptmodul for $\Gamma_0$ without zeros on the complex upper half plane $\mathfrak{H}$ (here $q_{\ell} := e^{2 \pi i z / \ell}$). We find universal recursive formulas for $q$-series coefficients of any modular form on $\Gamma_0^{+}(p)$ in terms of those of the canonical Hauptmodul $j_p^{+}$.

Categories:10D12, 11F11

119. CMB 2006 (vol 49 pp. 578)

Muić, Goran
On the Structure of the Full Lift for the Howe Correspondence of $(Sp(n), O(V))$ for Rank-One Reducibilities
In this paper we determine the structure of the full lift for the Howe correspondence of $(Sp(n),O(V))$ for rank-one reducibilities.

Categories:22E35, 22E50, 11F70

120. CMB 2006 (vol 49 pp. 448)

Pacelli, Allison M.
A Lower Bound on the Number of Cyclic Function Fields With Class Number Divisible by $n$
In this paper, we find a lower bound on the number of cyclic function fields of prime degree~$l$ whose class numbers are divisible by a given integer $n$. This generalizes a previous result of D. Cardon and R. Murty which gives a lower bound on the number of quadratic function fields with class numbers divisible by $n$.

Categories:11R29, 11R58

121. CMB 2006 (vol 49 pp. 428)

Lee, Min Ho
Vector-Valued Modular Forms of Weight Two Associated With Jacobi-Like Forms
We construct vector-valued modular forms of weight 2 associated to Jacobi-like forms with respect to a symmetric tensor representation of $\G$ by using the method of Kuga and Shimura as well as the correspondence between Jacobi-like forms and sequences of modular forms. As an application, we obtain vector-valued modular forms determined by theta functions and by pseudodifferential operators.

Categories:11F11, 11F50

122. CMB 2006 (vol 49 pp. 472)

Silvester, Alan K.; Spearman, Blair K.; Williams, Kenneth S.
Cyclic Cubic Fields of Given Conductor and Given Index
The number of cyclic cubic fields with a given conductor and a given index is determined.

Keywords:Discriminant, conductor, index, cyclic cubic field
Categories:11R16, 11R29

123. CMB 2006 (vol 49 pp. 196)

Chernousov, Vladimir
Another Proof of Totaro's Theorem on $E_8$-Torsors
We give a short proof of Totaro's theorem that every$E_8$-torsor over a field $k$ becomes trivial over a finiteseparable extension of $k$of degree dividing $d(E_8)=2^63^25$.

Categories:11E72, 14M17, 20G15

124. CMB 2006 (vol 49 pp. 247)

Myjak, Józef; Szarek, Tomasz; Ślȩczka, Maciej
A Szpilrajn--Marczewski Type Theorem for Concentration Dimension on Polish Spaces
Let $X$ be a Polish space. We will prove that $$ \dim_T X=\inf \{\dim_L X': X'\text{ is homeomorphic to } X\}, $$ where $\dim_L X$ and $\dim_T X$ stand for the concentration dimension and the topological dimension of $X$, respectively.

Keywords:Hausdorff dimension, topological dimension, Lévy concentration function, concentration dimension
Categories:11K55, 28A78

125. CMB 2006 (vol 49 pp. 296)

Sch"utt, Matthias
On the Modularity of Three Calabi--Yau Threefolds With Bad Reduction at 11
This paper investigates the modularity of three non-rigid Calabi--Yau threefolds with bad reduction at 11. They are constructed as fibre products of rational elliptic surfaces, involving the modular elliptic surface of level 5. Their middle $\ell$-adic cohomology groups are shown to split into two-dimensional pieces, all but one of which can be interpreted in terms of elliptic curves. The remaining pieces are associated to newforms of weight 4 and level 22 or 55, respectively. For this purpose, we develop a method by Serre to compare the corresponding two-dimensional 2-adic Galois representations with uneven trace. Eventually this method is also applied to a self fibre product of the Hesse-pencil, relating it to a newform of weight 4 and level 27.

Categories:14J32, 11F11, 11F23, 20C12
   1 ... 4 5 6 ... 9    

© Canadian Mathematical Society, 2016 :