CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 11 ( Number theory )

  Expand all        Collapse all Results 51 - 75 of 204

51. CMB 2010 (vol 53 pp. 661)

Johnstone, Jennifer A.; Spearman, Blair K.
Congruent Number Elliptic Curves with Rank at Least Three
We give an infinite family of congruent number elliptic curves each with rank at least three.

Keywords:congruent number, elliptic curve, rank
Category:11G05

52. CMB 2010 (vol 53 pp. 385)

Achter, Jeffrey D.
Exceptional Covers of Surfaces
Consider a finite morphism $f: X \rightarrow Y$ of smooth, projective varieties over a finite field $\mathbf{F}$. Suppose $X$ is the vanishing locus in $\mathbf{P}^N$ of $r$ forms of degree at most $d$. We show that there is a constant $C$ depending only on $(N,r,d)$ and $\deg(f)$ such that if $|{\mathbf{F}}|>C$, then $f(\mathbf{F}): X(\mathbf{F}) \rightarrow Y(\mathbf{F})$ is injective if and only if it is surjective.

Category:11G25

53. CMB 2010 (vol 53 pp. 571)

Trifković, Mak
Periods of Modular Forms and Imaginary Quadratic Base Change
Let $f$ be a classical newform of weight $2$ on the upper half-plane $\mathcal H^{(2)}$, $E$ the corresponding strong Weil curve, $K$ a class number one imaginary quadratic field, and $F$ the base change of $f$ to $K$. Under a mild hypothesis on the pair $(f,K)$, we prove that the period ratio $\Omega_E/(\sqrt{|D|}\Omega_F)$ is in $\mathbb Q$. Here $\Omega_F$ is the unique minimal positive period of $F$, and $\Omega_E$ the area of $E(\mathbb C)$. The claim is a specialization to base change forms of a conjecture proposed and numerically verified by Cremona and Whitley.

Category:11F67

54. CMB 2009 (vol 53 pp. 102)

Khan, Rizwanur
Spacings Between Integers Having Typically Many Prime Factors
We show that the sequence of integers which have nearly the typical number of distinct prime factors forms a Poisson process. More precisely, for $\delta$ arbitrarily small and positive, the nearest neighbor spacings between integers n with $|\omega(n) - log log n| < (log log n)^{\delta}$ obey the Poisson distribution law.

Category:11K99

55. CMB 2009 (vol 53 pp. 204)

56. CMB 2009 (vol 53 pp. 140)

Mukunda, Keshav
Pisot Numbers from $\{ 0, 1 \}$-Polynomials
A \emph{Pisot number} is a real algebraic integer greater than 1, all of whose conjugates lie strictly inside the open unit disk; a \emph{Salem number} is a real algebraic integer greater than 1, all of whose conjugate roots are inside the closed unit disk, with at least one of them of modulus exactly 1. Pisot numbers have been studied extensively, and an algorithm to generate them is well known. Our main result characterises all Pisot numbers whose minimal polynomial is derived from a Newman polynomial –- one with $\{0,1\}$-coefficients –- and shows that they form a strictly increasing sequence with limit $(1+\sqrt{5}) / 2$. It has long been known that every Pisot number is a limit point, from both sides, of sequences of Salem numbers. We show that this remains true, from at least one side, for the restricted sets of Pisot and Salem numbers that are generated by Newman polynomials.

Categories:11R06, 11R09, 11C08

57. CMB 2009 (vol 53 pp. 58)

Dąbrowski, Andrzej; Jędrzejak, Tomasz
Ranks in Families of Jacobian Varieties of Twisted Fermat Curves
In this paper, we prove that the unboundedness of ranks in families of Jacobian varieties of twisted Fermat curves is equivalent to the divergence of certain infinite series.

Keywords:Fermat curve, Jacobian variety, elliptic curve, canonical height
Categories:11G10, 11G05, 11G50, 14G05, 11G30, 14H45, 14K15

58. CMB 2009 (vol 53 pp. 95)

Ghioca, Dragos
Towards the Full Mordell-Lang Conjecture for Drinfeld Modules
Let $\phi$ be a Drinfeld module of generic characteristic, and let X be a sufficiently generic affine subvariety of $\mathbb{G_a^g}$. We show that the intersection of X with a finite rank $\phi$-submodule of $\mathbb{G_a^g}$ is finite.

Keywords:Drinfeld module, Mordell-Lang conjecture
Categories:11G09, 11G10

59. CMB 2009 (vol 53 pp. 87)

Ghioca, Dragos
Elliptic Curves over the Perfect Closure of a Function Field
We prove that the group of rational points of a non-isotrivial elliptic curve defined over the perfect closure of a function field in positive characteristic is finitely generated.

Keywords:elliptic curves, heights
Categories:11G50, 11G05

60. CMB 2009 (vol 53 pp. 187)

Ünver, Sinan
On the Local Unipotent Fundamental Group Scheme
We prove a local, unipotent, analog of Kedlaya's theorem for the pro-p part of the fundamental group of integral affine schemes in characteristic p.

Category:11G25

61. CMB 2009 (vol 52 pp. 583)

Konstantinou, Elisavet; Kontogeorgis, Aristides
Computing Polynomials of the Ramanujan $t_n$ Class Invariants
We compute the minimal polynomials of the Ramanujan values $t_n$, where $n\equiv 11 \mod 24$, using the Shimura reciprocity law. These polynomials can be used for defining the Hilbert class field of the imaginary quadratic field $\mathbb{Q}(\sqrt{-n})$ and have much smaller coefficients than the Hilbert polynomials.

Categories:11R29, 33E05, 11R20

62. CMB 2009 (vol 52 pp. 481)

Alaca, Ay\c{s}e; Alaca, \c{S}aban; Williams, Kenneth S.
Some Infinite Products of Ramanujan Type
In his ``lost'' notebook, Ramanujan stated two results, which are equivalent to the identities \[ \prod_{n=1}^{\infty} \frac{(1-q^n)^5}{(1-q^{5n})} =1-5\sum_{n=1}^{\infty}\Big( \sum_{d \mid n} \qu{5}{d} d \Big) q^n \] and \[ q\prod_{n=1}^{\infty} \frac{(1-q^{5n})^5}{(1-q^{n})} =\sum_{n=1}^{\infty}\Big( \sum_{d \mid n} \qu{5}{n/d} d \Big) q^n. \] We give several more identities of this type.

Keywords:Power series expansions of certain infinite products
Categories:11E25, 11F11, 11F27, 30B10

63. CMB 2009 (vol 52 pp. 511)

Bonciocat, Anca Iuliana; Bonciocat, Nicolae Ciprian
The Irreducibility of Polynomials That Have One Large Coefficient and Take a Prime Value
We use some classical estimates for polynomial roots to provide several irreducibility criteria for polynomials with integer coefficients that have one sufficiently large coefficient and take a prime value.

Keywords:Estimates for polynomial roots, irreducible polynomials
Categories:11C08, 11R09

64. CMB 2009 (vol 52 pp. 237)

Ghioca, Dragos
Points of Small Height on Varieties Defined over a Function Field
We obtain a Bogomolov type of result for the affine space defined over the algebraic closure of a function field of transcendence degree $1$ over a finite field.

Keywords:heights, Bogomolov conjecture
Categories:11G50, 11G25, 11G10

65. CMB 2009 (vol 52 pp. 186)

Broughan, Kevin A.
Extension of the Riemann $\xi$-Function's Logarithmic Derivative Positivity Region to Near the Critical Strip
If $K$ is a number field with $n_k=[k:\mathbb{Q}]$, and $\xi_k$ the symmetrized Dedekind zeta function of the field, the inequality $$\Re\,{\frac{ \xi_k'(\sigma + {\rm i} t)}{\xi_k(\sigma + {\rm i} t)}} > \frac{ \xi_k'(\sigma)}{\xi_k(\sigma)}$$ for $t\neq 0$ is shown to be true for $\sigma\ge 1+ 8/n_k^\frac{1}{3}$ improving the result of Lagarias where the constant in the inequality was 9. In the case $k=\mathbb{Q}$ the inequality is extended to $\si\ge 1$ for all $t$ sufficiently large or small and to the region $\si\ge 1+1/(\log t -5)$ for all $t\neq 0$. This answers positively a question posed by Lagarias.

Keywords:Riemann zeta function, xi function, zeta zeros
Categories:11M26, 11R42

66. CMB 2009 (vol 52 pp. 195)

Garaev, M. Z.; Garcia, V. C.; Konyagin, S. V.
The Waring Problem with the Ramanujan $\tau$-Function, II
Let $\tau(n)$ be the Ramanujan $\tau$-function. We prove that for any integer $N$ with $|N|\ge 2$ the diophantine equation $$\sum_{i=1}^{148000}\tau(n_i)=N$$ has a solution in positive integers $n_1, n_2,\ldots, n_{148000}$ satisfying the condition $$\max_{1\le i\le 148000}n_i\ll |N|^{2/11}e^{-c\log |N|/\log\log |N|},$$ for some absolute constant $c>0.$

Categories:11B13, 11F30

67. CMB 2009 (vol 52 pp. 66)

Dryden, Emily B.; Strohmaier, Alexander
Huber's Theorem for Hyperbolic Orbisurfaces
We show that for compact orientable hyperbolic orbisurfaces, the Laplace spectrum determines the length spectrum as well as the number of singular points of a given order. The converse also holds, giving a full generalization of Huber's theorem to the setting of compact orientable hyperbolic orbisurfaces.

Keywords:Huber's theorem, length spectrum, isospectral, orbisurfaces
Categories:58J53, 11F72

68. CMB 2009 (vol 52 pp. 117)

Poulakis, Dimitrios
On the Rational Points of the Curve $f(X,Y)^q = h(X)g(X,Y)$
Let $q = 2,3$ and $f(X,Y)$, $g(X,Y)$, $h(X)$ be polynomials with integer coefficients. In this paper we deal with the curve $f(X,Y)^q = h(X)g(X,Y)$, and we show that under some favourable conditions it is possible to determine all of its rational points.

Categories:11G30, 14G05, 14G25

69. CMB 2009 (vol 52 pp. 3)

Banks, W. D.
Carmichael Numbers with a Square Totient
Let $\varphi$ denote the Euler function. In this paper, we show that for all large $x$ there are more than $x^{0.33}$ Carmichael numbers $n\le x$ with the property that $\varphi(n)$ is a perfect square. We also obtain similar results for higher powers.

Categories:11N25, 11A25

70. CMB 2009 (vol 52 pp. 53)

Cummins, C. J.
Cusp Forms Like $\Delta$
Let $f$ be a square-free integer and denote by $\Gamma_0(f)^+$ the normalizer of $\Gamma_0(f)$ in $\SL(2,\R)$. We find the analogues of the cusp form $\Delta$ for the groups $\Gamma_0(f)^+$.

Categories:11F03, 11F22, 30F35

71. CMB 2009 (vol 52 pp. 63)

Dietmann, Rainer
Small Zeros of Quadratic Forms Avoiding a Finite Number of Prescribed Hyperplanes
We prove a new upper bound for the smallest zero $\mathbf{x}$ of a quadratic form over a number field with the additional restriction that $\mathbf{x}$ does not lie in a finite number of $m$ prescribed hyperplanes. Our bound is polynomial in the height of the quadratic form, with an exponent depending only on the number of variables but not on $m$.

Categories:11D09, 11E12, 11H46, 11H55

72. CMB 2008 (vol 51 pp. 627)

Vidanovi\'{c}, Mirjana V.; Tri\v{c}kovi\'{c}, Slobodan B.; Stankovi\'{c}, Miomir S.
Summation of Series over Bourget Functions
In this paper we derive formulas for summation of series involving J.~Bourget's generalization of Bessel functions of integer order, as well as the analogous generalizations by H.~M.~Srivastava. These series are expressed in terms of the Riemann $\z$ function and Dirichlet functions $\eta$, $\la$, $\b$, and can be brought into closed form in certain cases, which means that the infinite series are represented by finite sums.

Keywords:Riemann zeta function, Bessel functions, Bourget functions, Dirichlet functions
Categories:33C10, 11M06, 65B10

73. CMB 2008 (vol 51 pp. 497)

Borwein, Peter; Choi, Kwok-Kwong Stephen; Mercer, Idris
Expected Norms of Zero-One Polynomials
Let $\cA_n = \big\{ a_0 + a_1 z + \cdots + a_{n-1}z^{n-1} : a_j \in \{0, 1 \ } \big\}$, whose elements are called \emf{zero-one polynomials} and correspond naturally to the $2^n$ subsets of $[n] := \{ 0, 1, \ldots, n-1 \}$. We also let $\cA_{n,m} = \{ \alf(z) \in \cA_n : \alf(1) = m \}$, whose elements correspond to the ${n \choose m}$ subsets of~$[n]$ of size~$m$, and let $\cB_n = \cA_{n+1} \setminus \cA_n$, whose elements are the zero-one polynomials of degree exactly~$n$. Many researchers have studied norms of polynomials with restricted coefficients. Using $\norm{\alf}_p$ to denote the usual $L_p$ norm of~$\alf$ on the unit circle, one easily sees that $\alf(z) = a_0 + a_1 z + \cdots + a_N z^N \in \bR[z]$ satisfies $\norm{\alf}_2^2 = c_0$ and $\norm{\alf}_4^4 = c_0^2 + 2(c_1^2 + \cdots + c_N^2)$, where $c_k := \sum_{j=0}^{N-k} a_j a_{j+k}$ for $0 \le k \le N$. If $\alf(z) \in \cA_{n,m}$, say $\alf(z) = z^{\beta_1} + \cdots + z^{\beta_m}$ where $\beta_1 < \cdots < \beta_m$, then $c_k$ is the number of times $k$ appears as a difference $\beta_i - \beta_j$. The condition that $\alf \in \cA_{n,m}$ satisfies $c_k \in \{0,1\}$ for $1 \le k \le n-1$ is thus equivalent to the condition that $\{ \beta_1, \ldots, \beta_m \}$ is a \emf{Sidon set} (meaning all differences of pairs of elements are distinct). In this paper, we find the average of~$\|\alf\|_4^4$ over $\alf \in \cA_n$, $\alf \in \cB_n$, and $\alf \in \cA_{n,m}$. We further show that our expression for the average of~$\|\alf\|_4^4$ over~$\cA_{n,m}$ yields a new proof of the known result: if $m = o(n^{1/4})$ and $B(n,m)$ denotes the number of Sidon sets of size~$m$ in~$[n]$, then almost all subsets of~$[n]$ of size~$m$ are Sidon, in the sense that $\lim_{n \to \infty} B(n,m)/\binom{n}{m} = 1$.

Categories:11B83, 11C08, 30C10

74. CMB 2008 (vol 51 pp. 561)

Kuznetsov, Alexey
Expansion of the Riemann $\Xi$ Function in Meixner--Pollaczek Polynomials
In this article we study in detail the expansion of the Riemann $\Xi$ function in Meixner--Pollaczek polynomials. We obtain explicit formulas, recurrence relation and asymptotic expansion for the coefficients and investigate the zeros of the partial sums.

Categories:41A10, 11M26, 33C45

75. CMB 2008 (vol 51 pp. 337)

Bennett, Michael A.
Differences between Perfect Powers
We apply the hypergeometric method of Thue and Siegel to prove that if $a$ and $b$ are positive integers, then the inequality $ 0 <| a^x - b^y | < \frac{1}{4} \, \max \{ a^{x/2}, b^{y/2} \}$ has at most a single solution in positive integers $x$ and $y$. This essentially sharpens a classic result of LeVeque.

Categories:11D61, 11D45
Page
   1 2 3 4 ... 9    

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/