Expand all Collapse all | Results 176 - 200 of 204 |
176. CMB 2000 (vol 43 pp. 218)
Continued Fractions, Jacobi Symbols, and Quadratic Diophantine Equations The results herein continue observations on norm form equations and
continued fractions begun and continued in the works
\cite{chows}--\cite{mol}, and \cite{mvdpw}--\cite{schinz}.
Categories:11R11, 11D09, 11R29, 11R65 |
177. CMB 2000 (vol 43 pp. 239)
On the Number of Divisors of the Quadratic Form $m^2+n^2$ For an integer $n$, let $d(n)$ denote the ordinary divisor function.
This paper studies the asymptotic behavior of the sum
$$
S(x) := \sum_{m\leq x, n\leq x} d(m^2 + n^2).
$$
It is proved in the paper that, as $x \to \infty$,
$$
S(x) := A_1 x^2 \log x + A_2 x^2 + O_\epsilon (x^{\frac32 +
\epsilon}),
$$
where $A_1$ and $A_2$ are certain constants and $\epsilon$ is any
fixed positive real number.
The result corrects a false formula given in a paper of Gafurov
concerning the same problem, and improves the error $O \bigl(
x^{\frac53} (\log x)^9 \bigr)$ claimed by Gafurov.
Keywords:divisor, large sieve, exponential sums Categories:11G05, 14H52 |
178. CMB 2000 (vol 43 pp. 236)
On a Question of Buium We prove that $\{(n^p-n)/p\}_p \in \prod_p \mathbf{F}_p$, with $p$
ranging over all primes, is independent of $1$ over the integers,
assuming a conjecture in elementary number theory generalizing
the infinitude of Mersenne primes. This answers a question of
Buium. We also prove a generalization.
Category:11A07 |
179. CMB 2000 (vol 43 pp. 115)
Perfect Non-Extremal Riemann Surfaces An infinite family of perfect, non-extremal Riemann surfaces
is constructed, the first examples of this type of surfaces.
The examples are based on normal subgroups of the modular group
$\PSL(2,{\sf Z})$ of level $6$. They provide non-Euclidean
analogues to the existence of perfect, non-extremal positive
definite quadratic forms. The analogy uses the function {\it syst\/}
which associates to every Riemann surface $M$ the length of a systole,
which is a shortest closed geodesic of $M$.
Categories:11H99, 11F06, 30F45 |
180. CMB 1999 (vol 42 pp. 427)
Ramanujan and the Modular $j$-Invariant A new infinite product $t_n$ was introduced by S.~Ramanujan on the
last page of his third notebook. In this paper, we prove
Ramanujan's assertions about $t_n$ by establishing new connections
between the modular $j$-invariant and Ramanujan's cubic theory of
elliptic functions to alternative bases. We also show that for
certain integers $n$, $t_n$ generates the Hilbert class field of
$\mathbb{Q} (\sqrt{-n})$. This shows that $t_n$ is a new class
invariant according to H.~Weber's definition of class invariants.
Keywords:modular functions, the Borweins' cubic theta-functions, Hilbert class fields Categories:33C05, 33E05, 11R20, 11R29 |
181. CMB 1999 (vol 42 pp. 441)
Product Bases for the Rationals A sequence of positive rationals generates a subgroup of finite
index in the multiplicative positive rationals, and group product
representations by the sequence need only a bounded number of
terms, if and only if certain related sequences have densities
uniformly bounded from below.
Categories:11N99, 11N05 |
182. CMB 1999 (vol 42 pp. 393)
A Class of Supercuspidal Representations of $G_2(k)$ Let $H$ be an exceptional, adjoint group of type $E_6$ and split
rank 2, over a $p$-adic field $k$. In this article we discuss the
restriction of the minimal representation of $H$ to a dual pair
$\PD^{\times}\times G_2(k)$, where $D$ is a division algebra of
dimension 9 over $k$. In particular, we discover an interesting
class of supercuspidal representations of $G_2(k)$.
Categories:22E35, 22E50, 11F70 |
183. CMB 1999 (vol 42 pp. 263)
Mellin Transforms of Mixed Cusp Forms We define generalized Mellin transforms of mixed cusp forms, show
their convergence, and prove that the function obtained by such a
Mellin transform of a mixed cusp form satisfies a certain
functional equation. We also prove that a mixed cusp form can be
identified with a holomorphic form of the highest degree on an
elliptic variety.
Categories:11F12, 11F66, 11M06, 14K05 |
184. CMB 1999 (vol 42 pp. 129)
Hecke Operations and the Adams $E_2$-Term Based on Elliptic Cohomology Hecke operators are used to investigate part of the $\E_2$-term of
the Adams spectral sequence based on elliptic homology. The main
result is a derivation of $\Ext^1$ which combines use of classical
Hecke operators and $p$-adic Hecke operators due to Serre.
Keywords:Adams spectral sequence, elliptic cohomology, Hecke operators Categories:55N20, 55N22, 55T15, 11F11, 11F25 |
185. CMB 1999 (vol 42 pp. 68)
The Moments of the Sum-Of-Digits Function in Number Fields We consider the asymptotic behavior of the moments of the sum-of-digits
function of canonical number systems in number fields. Using Delange's
method we obtain the main term and smaller order terms which contain
periodic fluctuations.
Categories:11A63, 11N60 |
186. CMB 1999 (vol 42 pp. 78)
Fermat Jacobians of Prime Degree over Finite Fields We study the splitting of Fermat Jacobians of prime
degree $\ell$ over an algebraic closure of a finite field of
characteristic $p$ not equal to $\ell$. We prove that their
decomposition is determined by the residue degree of $p$ in the
cyclotomic field of the $\ell$-th roots of unity. We provide a
numerical criterion that allows to compute the absolutely simple
subvarieties and their multiplicity in the Fermat Jacobian.
Categories:11G20, 14H40 |
187. CMB 1999 (vol 42 pp. 25)
On the Set of Common Differences in van der Waerden's Theorem on Arithmetic Progressions Analogues of van der Waerden's theorem on arithmetic progressions
are considered where the family of all arithmetic progressions,
$\AP$, is replaced by some subfamily of $\AP$. Specifically, we
want to know for which sets $A$, of positive integers, the
following statement holds: for all positive integers $r$ and $k$,
there exists a positive integer $n= w'(k,r)$ such that for every
$r$-coloring of $[1,n]$ there exists a monochromatic $k$-term
arithmetic progression whose common difference belongs to $A$. We
will call any subset of the positive integers that has the above
property {\em large}. A set having this property for a specific
fixed $r$ will be called {\em $r$-large}. We give some necessary
conditions for a set to be large, including the fact that every
large set must contain an infinite number of multiples of each
positive integer. Also, no large set $\{a_{n}: n=1,2,\dots\}$ can
have $\liminf\limits_{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} > 1$.
Sufficient conditions for a set to be large are also given. We
show that any set containing $n$-cubes for arbitrarily large $n$,
is a large set. Results involving the connection between the
notions of ``large'' and ``2-large'' are given. Several open
questions and a conjecture are presented.
Categories:11B25, 05D10 |
188. CMB 1998 (vol 41 pp. 488)
Remarks on certain metaplectic groups We study metaplectic coverings of the adelized group of a split
connected reductive group $G$ over a number field $F$. Assume its
derived group $G'$ is a simply connected simple Chevalley
group. The purpose is to provide some naturally defined sections
for the coverings with good properties which might be helpful when
we carry some explicit calculations in the theory of automorphic
forms on metaplectic groups. Specifically, we
\begin{enumerate}
\item construct metaplectic coverings of $G({\Bbb A})$ from those
of $G'({\Bbb A})$;
\item for any non-archimedean place $v$, show the section for a
covering of $G(F_{v})$ constructed from a Steinberg section is an
isomorphism, both algebraically and topologically in an open
subgroup of $G(F_{v})$;
\item define a global section which is a product of local sections
on a maximal torus, a unipotent subgroup and a set of
representatives for the Weyl group.
Categories:20G10, 11F75 |
189. CMB 1998 (vol 41 pp. 328)
Class number one and prime-producing quadratic polynomials revisited Over a decade ago, this author produced class number one criteria for
real quadratic fields in terms of prime-producing quadratic
polynomials. The purpose of this article is to revisit the problem
from a new perspective with new criteria. We look at the more general
situation involving arbitrary real quadratic orders rather than the
more restrictive field case, and use the interplay between the various
orders to provide not only more general results, but also simpler proofs.
Categories:11R11, 11R09, 11R29 |
190. CMB 1998 (vol 41 pp. 335)
191. CMB 1998 (vol 41 pp. 187)
Exponential sums on reduced residue systems The aim of this article is to obtain an upper bound for the exponential sums
$\sum e(f(x)/q)$, where the summation runs from $x=1$ to $x=q$ with $(x,q)=1$
and $e(\alpha)$ denotes $\exp(2\pi i\alpha)$.
We shall show that the upper bound depends only on the values of $q$ and $s$, %% where $s$ is the number of terms in the polynomial $f(x)$.
Category:11L07 |
192. CMB 1998 (vol 41 pp. 158)
Power integral bases in composits of number fields In the present paper we consider the problem of finding power
integral bases in number fields which are composits of two
subfields with coprime discriminants. Especially, we consider
imaginary quadratic extensions of totally real cyclic number
fields of prime degree. As an example we solve the index form
equation completely in a two parametric family of fields of degree
$10$ of this type.
Categories:11D57, 11R21 |
193. CMB 1998 (vol 41 pp. 86)
On \lowercase{$q$}-exponential functions for \lowercase{$|q| =1$} We discuss the $q$-exponential functions $e_q$, $E_q$ for $q$ on the unit
circle, especially their continuity in $q$, and analogues of the limit
relation $ \lim_{q\rightarrow 1}e_q((1-q)z)=e^z$.
Keywords:$q$-series, $q$-exponentials Categories:33D05, 11A55, 11K70 |
194. CMB 1998 (vol 41 pp. 125)
Uniform approximation to Mahler's measure in several variables If $f(x_1,\dots,x_k)$ is a polynomial with complex coefficients, the Mahler measure
of $f$, $M(f)$ is defined to be the geometric mean of $|f|$ over the $k$-torus
$\Bbb T^k$. We construct a sequence of approximations $M_n(f)$ which satisfy
$-d2^{-n}\log 2 + \log M_n(f) \le \log M(f) \le \log M_n(f)$. We use these to prove
that $M(f)$ is a continuous function of the coefficients of $f$ for polynomials
of fixed total degree $d$. Since $M_n(f)$ can be computed in a finite number
of arithmetic operations from the coefficients of $f$ this also demonstrates
an effective (but impractical) method for computing $M(f)$ to arbitrary
accuracy.
Categories:11R06, 11K16, 11Y99 |
195. CMB 1998 (vol 41 pp. 15)
Sequences with translates containing many primes Garrison [3], Forman [2], and Abel and Siebert [1] showed that for all positive integers
$k$ and $N$, there exists a positive integer $\lambda$ such that $n^k+\lambda$ is
prime for at least $N$ positive integers $n$. In other words, there exists $\lambda$
such that $n^k+\lambda$ represents at least $N$ primes.
We give a quantitative version of this result. We show that there exists
$\lambda \leq x^k$ such that $n^k+\lambda$, $1\leq n\leq x$, represents at
least $(\frac 1k+o(1)) \pi(x)$ primes, as $x\rightarrow \infty$. We also give some
related results.
Category:11A48 |
196. CMB 1998 (vol 41 pp. 71)
Splitting patterns and trace forms The splitting pattern of a quadratic form $q$ over
a field $k$ consists of all distinct Witt indices that occur for $q$
over extension fields of $k$. In small dimensions, the complete list
of splitting patterns of quadratic forms is known. We show that
{\it all\/} splitting patterns of quadratic forms of dimension at
most nine can be realized by trace forms.
Keywords:Quadratic forms, Witt indices, generic splitting. Category:11E04 |
197. CMB 1997 (vol 40 pp. 385)
Elliptic units and class fields of global function fields Elliptic units of global function fields were first studied by
D.~Hayes in the case that $\deg\infty$ is assumed to be $1$, and he
obtained some class number formulas using elliptic units. We
generalize Hayes' results to the case that $\deg\infty$ is arbitrary.
Categories:11R58, 11G09 |
198. CMB 1997 (vol 40 pp. 402)
On the Preservation of Root Numbers and the Behavior of Weil Characters Under Reciprocity Equivalence |
On the Preservation of Root Numbers and the Behavior of Weil Characters Under Reciprocity Equivalence This paper studies how the local root numbers and the Weil additive
characters of the Witt ring of a number field behave under
reciprocity equivalence. Given a reciprocity equivalence between
two fields, at each place we define a local square class which
vanishes if and only if the local root numbers are preserved. Thus
this local square class serves as a local obstruction to the
preservation of local root numbers. We establish a set of
necessary and sufficient conditions for a selection of local square
classes (one at each place) to represent a global square class.
Then, given a reciprocity equivalence that has a finite wild set,
we use these conditions to show that the local square classes
combine to give a global square class which serves as a global
obstruction to the preservation of all root numbers. Lastly, we
use these results to study the behavior of Weil characters under
reciprocity equivalence.
Categories:11E12, 11E08 |
199. CMB 1997 (vol 40 pp. 498)
Matrix transformations based on Dirichlet convolution This paper is a study of summability methods that are based
on Dirichlet convolution. If $f(n)$ is a function on positive integers
and $x$ is a sequence such that $\lim_{n\to \infty} \sum_{k\le n}
{1\over k}(f\ast x)(k) =L$, then $x$ is said to be {\it $A_f$-summable\/}
to $L$. The necessary and sufficient condition for the matrix $A_f$ to
preserve bounded variation of sequences is established. Also, the
matrix $A_f$ is investigated as $\ell - \ell$ and $G-G$ mappings. The
strength of the $A_f$-matrix is also discussed.
Categories:11A25, 40A05, 40C05, 40D05 |
200. CMB 1997 (vol 40 pp. 376)
The dual pair $PGL_3 \times G_2$ Let $H$ be the split, adjoint group of type $E_6$ over a $p$-adic field.
In this paper we study the restriction of the minimal representation of
$H$ to the closed subgroup $PGL_3 \times G_2$.
Categories:22E35, and, 50, 11F70 |