Expand all Collapse all | Results 1 - 4 of 4 |
1. CMB 2011 (vol 56 pp. 265)
Embedding Distributions of Generalized Fan Graphs Total embedding distributions have been known for a few classes of graphs.
Chen, Gross, and Rieper
computed it for necklaces, close-end ladders and cobblestone
paths. Kwak and Shim computed it for bouquets of circles and
dipoles. In this paper, a splitting theorem is generalized
and the embedding distributions of
generalized fan graphs are obtained.
Keywords:total embedding distribution, splitting theorem, generalized fan graphs Category:05C10 |
2. CMB 2008 (vol 51 pp. 535)
On the Simple $\Z_2$-homotopy Types of Graph Complexes and Their Simple $\Z_2$-universality We prove that the neighborhood complex $\N(G)$,
the box complex $\B(G)$, the homomorphism complex
$\Hom(K_2,G)$and the Lov\'{a}sz complex $\L(G)$ have the
same simple $\Z_2$-homotopy type in the sense of
Whitehead. We show that these graph complexes
are simple $\Z_2$-universal.
Keywords:graph complexes, simple $\Z_2$-homotopy, universality Categories:57Q10, 05C10, 55P10 |
3. CMB 2001 (vol 44 pp. 370)
On Locating Isometric $\ell_{1}^{(n)}$ Motivated by a question of Per Enflo, we develop a hypercube criterion
for locating linear isometric copies of $\lone$ in an arbitrary real
normed space $X$.
The said criterion involves finding $2^{n}$ points in $X$ that satisfy
one metric equality. This contrasts nicely to the standard classical
criterion wherein one seeks $n$ points that satisfy $2^{n-1}$ metric
equalities.
Keywords:normed spaces, hypercubes Categories:46B04, 05C10, 05B99 |
4. CMB 2000 (vol 43 pp. 108)
On the Entire Coloring Conjecture The Four Color Theorem says that the faces (or vertices) of a plane
graph may be colored with four colors. Vizing's Theorem says that the
edges of a graph with maximum degree $\Delta$ may be colored with
$\Delta+1$ colors. In 1972, Kronk and Mitchem conjectured that the
vertices, edges, and faces of a plane graph may be simultaneously
colored with $\Delta+4$ colors. In this article, we give a simple
proof that the conjecture is true if $\Delta \geq 6$.
Categories:05C15, 05C10 |