Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 05C05 ( Trees )

  Expand all        Collapse all Results 1 - 2 of 2

1. CMB 2010 (vol 53 pp. 425)

Chapoton, Frédéric
Free Pre-Lie Algebras are Free as Lie Algebras
We prove that the $\mathfrak{S}$-module $\operatorname{PreLie}$ is a free Lie algebra in the category of $\mathfrak{S}$-modules and can therefore be written as the composition of the $\mathfrak{S}$-module $\operatorname{Lie}$ with a new $\mathfrak{S}$-module $X$. This implies that free pre-Lie algebras in the category of vector spaces, when considered as Lie algebras, are free on generators that can be described using $X$. Furthermore, we define a natural filtration on the $\mathfrak{S}$-module $X$. We also obtain a relationship between $X$ and the $\mathfrak{S}$-module coming from the anticyclic structure of the $\operatorname{PreLie}$ operad.

Categories:18D50, 17B01, 18G40, 05C05

2. CMB 2000 (vol 43 pp. 3)

Adin, Ron; Blanc, David
Resolutions of Associative and Lie Algebras
Certain canonical resolutions are described for free associative and free Lie algebras in the category of non-associative algebras. These resolutions derive in both cases from geometric objects, which in turn reflect the combinatorics of suitable collections of leaf-labeled trees.

Keywords:resolutions, homology, Lie algebras, associative algebras, non-associative algebras, Jacobi identity, leaf-labeled trees, associahedron
Categories:18G10, 05C05, 16S10, 17B01, 17A50, 18G50

© Canadian Mathematical Society, 2014 :