1. CMB Online first
 Hashemi, Ebrahim; Amirjan, R.

Zerodivisor graphs of Ore extensions over reversible rings
Let $R$ be an associative ring with identity.
First we prove some results about zerodivisor graphs of reversible
rings. Then we study the zerodivisors of the skew power series
ring $R[[x;\alpha]]$, whenever $R$ is reversible and $\alpha$compatible. Moreover, we compare the diameter and girth of the zerodivisor
graphs of $\Gamma(R)$, $\Gamma(R[x;\alpha,\delta])$ and $\Gamma(R[[x;\alpha]])$,
when
$R$ is reversible and $(\alpha,\delta)$compatible.
Keywords:zerodivisor graphs, reversible rings, McCoy rings, polynomial rings, power series rings Categories:13B25, 05C12, 16S36 

2. CMB Online first
 Su, Huadong

On the Diameter of Unitary Cayley Graphs of Rings
The unitary Cayley graph of a ring $R$, denoted
$\Gamma(R)$, is the simple graph
defined on all elements of $R$, and where two vertices $x$ and
$y$
are adjacent if and only if $xy$ is a unit in $R$. The largest
distance between all pairs of vertices of a graph $G$ is called
the
diameter of $G$, and is denoted by ${\rm diam}(G)$. It is proved
that for each integer $n\geq1$, there exists a ring $R$ such
that
${\rm diam}(\Gamma(R))=n$. We also show that ${\rm
diam}(\Gamma(R))\in \{1,2,3,\infty\}$ for a ring $R$ with $R/J(R)$
selfinjective and classify all those rings with ${\rm
diam}(\Gamma(R))=1$, 2, 3 and $\infty$, respectively.
Keywords:unitary Cayley graph, diameter, $k$good, unit sum number, selfinjective ring Categories:05C25, 16U60, 05C12 

3. CMB Online first
4. CMB Online first
 Shaveisi, Farzad

Some Results on the AnnihilatingIdeal Graphs
The annihilatingideal graph
of a commutative ring $R$, denoted by $\mathbb{AG}(R)$, is a
graph whose vertex set consists of all nonzero annihilating
ideals and two distinct
vertices $I$ and $J$ are adjacent if and only if $IJ=(0)$. Here,
we show that if $R$ is a reduced ring and the independence
number of $\mathbb{AG}(R)$ is finite, then the edge chromatic
number of $\mathbb{AG}(R)$ equals its maximum degree
and this number equals $2^{{\rm Min}(R)1}1$; also, it is
proved that the independence number of $\mathbb{AG}(R)$ equals
$2^{{\rm Min}(R)1}$, where ${\rm Min}(R)$ denotes the set
of minimal prime ideals of $R$.
Then we give some criteria for a graph to be isomorphic with
an annihilatingideal graph of a ring.
For example, it is shown that every bipartite annihilatingideal
graph is a complete bipartite graph with at most two horns. Among
other results, it is shown that a finite graph $\mathbb{AG}(R)$
is not Eulerian, and it is Hamiltonian if and only if $R$ contains
no Gorenstain ring as its direct summand.
Keywords:annihilatingideal graph, independence number, edge chromatic number, bipartite, cycle Categories:05C15, 05C69, 13E05, 13E10 

5. CMB Online first
 Chen, Yichao; Yin, Xuluo

The thickness of the Cartesian product of two graphs
The thickness of a graph $G$ is the minimum number
of planar subgraphs whose union is $G.$ A
$t$minimal graph is a graph of thickness $t$ which contains
no proper subgraph of thickness $t.$ In this paper, upper and
lower bounds are obtained for the thickness, $t(G\Box H)$, of
the Cartesian
product of two graphs $G$ and $H$, in terms of the thickness
$t(G)$ and $t(H)$.
Furthermore, the thickness of the Cartesian product of two planar
graphs and of a $t$minimal graph and a planar graph are determined.
By using a new planar decomposition of the complete bipartite
graph $K_{4k,4k},$ the thickness of the Cartesian product of
two complete bipartite graphs $K_{n,n}$ and $K_{n,n}$ is also
given, for $n\neq 4k+1$.
Keywords:planar graph, thickness, Cartesian product, $t$minimal graph, complete bipartite graph Category:05C10 

6. CMB Online first
 Akbari, Saieed; Miraftab, Babak; Nikandish, Reza

CoMaximal Graphs of Subgroups of Groups
Let $H$ be a group. The comaximal graph of subgroups
of $H$, denoted by $\Gamma(H)$, is a
graph whose vertices are nontrivial and proper subgroups of
$H$ and two distinct vertices $L$
and $K$ are adjacent in $\Gamma(H)$ if and only if $H=LK$. In
this paper, we study the connectivity, diameter, clique number
and vertex
chromatic number of $\Gamma(H)$. For instance, we show that
if $\Gamma(H)$ has no isolated vertex, then $\Gamma(H)$
is connected with diameter at most $3$. Also, we characterize
all finite groups whose comaximal graphs are connected.
Among other results, we show that if $H$ is a finitely generated
solvable group and $\Gamma(H)$ is connected and moreover the
degree of a maximal subgroup is finite, then $H$ is finite.
Furthermore, we show that the degree of each vertex in the
comaximal graph of a general linear group over an algebraically
closed field is zero or infinite.
Keywords:comaximal graphs of subgroups of groups, diameter, nilpotent group, solvable group Categories:05C25, 05E15, 20D10, 20D15 

7. CMB Online first
 Dolžan, David

The metric dimension of the total graph of a finite commutative ring
We study the total graph of a finite commutative ring. We calculate
its metric dimension in the case when the Jacobson radical of
the ring is nontrivial and we examine the metric dimension of
the total graph of a product of at most two fields, obtaining
either exact values in some cases or bounds in other, depending
on the number of elements in the respective fields.
Keywords:total graph, finite ring, metric dimension Categories:13M99, 05E40 

8. CMB 2016 (vol 59 pp. 440)
 Zhang, Haihui

A Note on 3choosability of Planar Graphs Related to Montanssier's Conjecture
A graph $G=(V,E)$ is $L$colorable if for a given list
assignment $L=\{L(v):v\in V(G)\}$, there exists a proper coloring
$c$ of $G$ such that $c(v)\in L(v)$ for all $v\in V$. If $G$ is
$L$colorable for every list assignment $L$ with $L(v)\geq
k$ for
all $v\in V$, then $G$ is said to be $k$choosable. Montassier
(Inform. Process. Lett. 99 (2006) 6871) conjectured that every
planar
graph without cycles of length 4, 5, 6, is 3choosable. In this
paper,
we prove that every planar graph without 5, 6 and 10cycles,
and
without two triangles at distance less than 3 is 3choosable.
Keywords:choosability, planar graph, cycle Category:05C15 

9. CMB 2016 (vol 59 pp. 287)
 Dukes, Peter; Lamken, E.R.; Ling, Alan C.H.

An Existence Theory for Incomplete Designs
An incomplete pairwise balanced design is equivalent to a pairwise
balanced design with a distinguished block, viewed as a `hole'.
If there are $v$ points, a hole of size $w$, and all (other)
block sizes equal $k$, this is denoted IPBD$((v;w),k)$. In addition
to congruence restrictions on $v$ and $w$, there is also a necessary
inequality: $v \gt (k1)w$. This article establishes two main existence
results for IPBD$((v;w),k)$: one in which $w$ is fixed and $v$
is large, and the other in the case $v \gt (k1+\epsilon) w$ when
$w$ is large (depending on $\epsilon$). Several possible generalizations
of the problem are also discussed.
Keywords:block design, hypergraph Category:05C70 

10. CMB 2015 (vol 59 pp. 190)
 Raeisi, Ghaffar; Zaghian, Ali

Ramsey Number of Wheels Versus Cycles and Trees
Let $G_1, G_2, \dots , G_t$ be arbitrary graphs. The
Ramsey number $R(G_1, G_2, \dots, G_t)$ is the smallest positive
integer $n$ such that if the edges of the complete graph $K_n$
are
partitioned into $t$ disjoint color classes giving $t$ graphs
$H_1,H_2,\dots,H_t$, then at least one $H_i$ has a subgraph
isomorphic to $G_i$. In this paper, we provide the exact value
of
the $R(T_n,W_m)$ for odd $m$, $n\geq m1$, where $T_n$ is
either a caterpillar, a tree with diameter at most four or a
tree
with a vertex adjacent to at least $\lceil
\frac{n}{2}\rceil2$ leaves. Also, we
determine $R(C_n,W_m)$ for even integers $n$ and $m$, $n\geq
m+500$, which improves a result of Shi and confirms a
conjecture of Surahmat et al. In addition, the multicolor Ramsey
number of trees
versus an odd wheel is discussed in this paper.
Keywords:Ramsey number, wheel, tree, cycle Categories:05C15, 05C55, 05C65 

11. CMB 2015 (vol 59 pp. 170)
 MartínezPedroza, Eduardo

A Note on Fine Graphs and Homological Isoperimetric Inequalities
In the framework of homological characterizations of relative
hyperbolicity, Groves and Manning posed the question of whether
a simply connected $2$complex $X$ with a linear homological
isoperimetric inequality, a bound on the length of attaching
maps of $2$cells and finitely many $2$cells adjacent to any
edge must have a fine $1$skeleton. We provide a positive answer
to this question. We revisit a homological characterization
of relative hyperbolicity, and show that a group $G$ is hyperbolic
relative to a collection of subgroups $\mathcal P$ if and only if
$G$ acts cocompactly with finite edge stabilizers on an connected
$2$dimensional cell complex with a linear homological isoperimetric
inequality and $\mathcal P$ is a collection of representatives of
conjugacy classes of vertex stabilizers.
Keywords:isoperimetric functions, Dehn functions, hyperbolic groups Categories:20F67, 05C10, 20J05, 57M60 

12. CMB 2015 (vol 59 pp. 36)
 Donovan, Diane M.; Griggs, Terry S.; McCourt, Thomas A.; Opršal, Jakub; Stanovský, David

Distributive and Antidistributive Mendelsohn Triple Systems
We prove that the existence spectrum of Mendelsohn triple systems
whose associated quasigroups satisfy distributivity corresponds
to the Loeschian numbers, and provide some enumeration results.
We do this by considering a description of the quasigroups in
terms of commutative Moufang loops.
In addition we provide constructions of Mendelsohn quasigroups
that fail distributivity for as many combinations of elements
as possible.
These systems are analogues of Hall triple systems and antimitre
Steiner triple systems respectively.
Keywords:Mendelsohn triple system, quasigroup, distributive, Moufang loop, Loeschian numbers Categories:20N05, 05B07 

13. CMB 2015 (vol 58 pp. 610)
14. CMB 2015 (vol 58 pp. 320)
 Llamas, Aurora; MartínezBernal, José

Cover Product and Betti Polynomial of Graphs
For disjoint graphs $G$ and $H$, with fixed
vertex covers
$C(G)$ and $C(H)$, their cover product is the graph $G
\circledast
H$ with vertex set
$V(G)\cup V(H)$ and edge set $E(G)\cup E(H)\cup\{\{i,j\}:i\in
C(G), j\in
C(H)\}$. We describe the graded Betti numbers of $G\circledast
H$ in terms of those of
$G$ and $H$. As applications we obtain: (i) For any positive
integer $k$ there
exists a connected bipartite graph $G$ such that $\operatorname{reg}
R/I(G)=\mu_S(G)+k$, where,
$I(G)$ denotes the edge ideal of $G$, $\operatorname{reg} R/I(G)$
is the CastelnuovoMumford
regularity of $R/I(G)$ and $\mu_S(G)$ is the induced or strong
matching number of
$G$; (ii) The graded Betti numbers of the complement of a tree
only depends upon
its number of vertices; (iii) The $h$vector of $R/I(G\circledast
H)$ is described in
terms of the $h$vectors of $R/I(G)$ and $R/I(H)$. Furthermore,
in a different
direction, we give a recursive formula for the graded Betti numbers
of chordal
bipartite graphs.
Keywords:CastelnuovoMumford regularity, chordal bipartite graph, edge ideal, graded Betti number, induced matching number, monomial ideal Categories:13D02, 05E45 

15. CMB 2015 (vol 58 pp. 306)
 Khoshkhah, Kaveh; Zaker, Manouchehr

On the Largest Dynamic Monopolies of Graphs with a Given Average Threshold
Let $G$ be a graph and $\tau$ be an assignment of nonnegative
integer thresholds to the vertices of $G$. A subset of vertices,
$D$ is said to be a $\tau$dynamic monopoly, if $V(G)$ can be
partitioned into subsets $D_0, D_1, \ldots, D_k$ such that $D_0=D$
and for any $i\in \{0, \ldots, k1\}$, each vertex $v$ in $D_{i+1}$
has at least $\tau(v)$ neighbors in $D_0\cup \ldots \cup D_i$.
Denote the size of smallest $\tau$dynamic monopoly by $dyn_{\tau}(G)$
and the average of thresholds in $\tau$ by $\overline{\tau}$.
We show that the values of $dyn_{\tau}(G)$ over all assignments
$\tau$ with the same average threshold is a continuous set of
integers. For any positive number $t$, denote the maximum $dyn_{\tau}(G)$
taken over all threshold assignments $\tau$ with $\overline{\tau}\leq
t$, by $Ldyn_t(G)$. In fact, $Ldyn_t(G)$ shows the worstcase
value of a dynamic monopoly when the average threshold is a given
number $t$. We investigate under what conditions on $t$, there
exists an upper bound for $Ldyn_{t}(G)$ of the form $cG$, where
$c\lt 1$. Next, we show that $Ldyn_t(G)$ is coNPhard for planar
graphs but has polynomialtime solution for forests.
Keywords:spread of influence in graphs, irreversible dynamic monopolies, target set selection Categories:05C69, 05C85 

16. CMB 2015 (vol 58 pp. 271)
17. CMB 2015 (vol 58 pp. 317)
18. CMB 2014 (vol 58 pp. 105)
 HosseinZadeh, Samaneh; Iranmanesh, Ali; Hosseinzadeh, Mohammad Ali; Lewis, Mark L.

On Graphs Associated with Character Degrees and Conjugacy Class Sizes of Direct Products of Finite Groups
The prime vertex graph, $\Delta (X)$, and the common divisor graph,
$\Gamma (X)$, are two graphs that have been defined on a set of
positive integers $X$.
Some
properties of these graphs have been studied in the cases where either
$X$ is the set of character degrees of a group or $X$ is the set of
conjugacy class sizes of a group. In this paper, we gather some
results on these graphs arising in the context of direct product of
two groups.
Keywords:prime vertex graph, common divisor graph, character degree, class sizes, graph operation Categories:20E45, 05C25, 05C76 

19. CMB 2014 (vol 57 pp. 658)
 Thang, Nguyen Tat

Admissibility of Local Systems for some Classes of Line Arrangements
Let $\mathcal{A}$ be a line arrangement in the complex
projective plane $\mathbb{P}^2$ and let $M$ be its complement. A rank one
local system $\mathcal{L}$ on $M$ is admissible if roughly speaking
the cohomology groups
$H^m(M,\mathcal{L})$ can be computed directly from the cohomology
algebra $H^{*}(M,\mathbb{C})$. In this work, we give a sufficient
condition for the admissibility of all rank one local systems on
$M$. As a result, we obtain some properties of the characteristic
variety $\mathcal{V}_1(M)$ and the Resonance variety $\mathcal{R}_1(M)$.
Keywords:admissible local system, line arrangement, characteristic variety, multinet, resonance variety Categories:14F99, 32S22, 52C35, 05A18, 05C40, 14H50 

20. CMB 2014 (vol 57 pp. 573)
 Kiani, Sima; Maimani, Hamid Reza; Nikandish, Reza

Some Results on the Domination Number of a Zerodivisor Graph
In this paper, we investigate the domination, total domination and
semitotal domination numbers of a zerodivisor graph of a
commutative Noetherian ring. Also, some relations between the
domination numbers of $\Gamma(R/I)$ and $\Gamma_I(R)$, and the
domination numbers of $\Gamma(R)$ and $\Gamma(R[x,\alpha,\delta])$,
where $R[x,\alpha,\delta]$ is the Ore extension of $R$, are studied.
Keywords:zerodivisor graph, domination number Categories:05C75, 13H10 

21. CMB 2014 (vol 57 pp. 520)
22. CMB 2013 (vol 57 pp. 72)
 Grari, A.

Un Anneau Commutatif associÃ© Ã un design symÃ©trique
Dans les articles \cite{1}, \cite{2} et \cite{3}; l'auteur dÃ©veloppe une reprÃ©sentation
d'un plan projectif fini par un
anneau commutatif unitaire dont les propriÃ©tÃ©s algÃ©briques dÃ©pendent
de la structure gÃ©omÃ©trique du plan. Dans l'article \cite{4}; il Ã©tend cette reprÃ©sentation aux designs symÃ©triques. Cependant l'auteur de l'article \cite{7} fait remarquer que la multiplication dÃ©finie dans ce cas ne peut Ãªtre associative que si le design est un plan projectif.
Dans ce papier on mÃ¨nera
une Ã©tude de cette reprÃ©sentation dans le cas des designs
symÃ©triques. On y montrera comment on peut faire associer un
anneau commutatif unitaire Ã
tout design symÃ©trique , on y prÃ©cisera certaines de ses propriÃ©tÃ©s, en
particulier, celles qui relÃ¨vent de son invariance. On caractÃ©risera aussi les gÃ©omÃ©tries projectives finies de dimension supÃ©rieure moyennant cette reprÃ©sentation.
Keywords:projective planes, symmetric designs, commutative rings Categories:05B05, 16S99 

23. CMB 2013 (vol 57 pp. 375)
 López, S. C.; MuntanerBatle, ; RiusFont,

A Problem on Edgemagic Labelings of Cycles
Kotzig and Rosa defined in 1970 the concept of edgemagic labelings as
follows: let $G$ be a simple $(p,q)$graph (that is, a graph of order $p$
and size $q$ without loops or multiple edges). A bijective function $f:V(G)\cup
E(G)\rightarrow \{1,2,\ldots,p+q\}$ is an edgemagic labeling of $G$ if
$f(u)+f(uv)+f(v)=k$, for all $uv\in E(G)$. A graph that admits an edgemagic
labeling is called an edgemagic graph, and $k$ is called the magic sum
of the labeling. An old conjecture of Godbold and Slater sets that all
possible theoretical magic sums are attained for each cycle of order $n\ge
7$. Motivated by this conjecture, we prove that for all $n_0\in \mathbb{N}$,
there exists $n\in \mathbb{N}$, such that the cycle $C_n$ admits at least
$n_0$ edgemagic labelings with at least $n_0$ mutually distinct magic
sums. We do this by providing a lower bound for the number of magic sums
of the cycle $C_n$, depending on the sum of the exponents of the odd primes
appearing in the prime factorization of $n$.
Keywords:edgemagic, valence, $\otimes_h$product Category:05C78 

24. CMB 2013 (vol 57 pp. 225)
 Adamaszek, Michał

Small Flag Complexes with Torsion
We classify flag complexes on at most $12$ vertices with torsion in
the first homology group. The result is moderately computeraided.
As a consequence we confirm a folklore conjecture that the smallest
poset whose order complex is homotopy equivalent to the real
projective plane (and also the smallest poset with torsion in the
first homology group) has exactly $13$ elements.
Keywords:clique complex, order complex, homology, torsion, minimal model Categories:55U10, 06A11, 55P40, 5504, 0504 

25. CMB 2013 (vol 57 pp. 631)
 Sokić, Miodrag

Indicators, Chains, Antichains, Ramsey Property
We introduce two Ramsey classes of finite relational structures. The first
class contains finite structures of the form $(A,(I_{i})_{i=1}^{n},\leq
,(\preceq _{i})_{i=1}^{n})$ where $\leq $ is a total ordering on $A$ and $%
\preceq _{i}$ is a linear ordering on the set $\{a\in A:I_{i}(a)\}$. The
second class contains structures of the form $(A,\leq
,(I_{i})_{i=1}^{n},\preceq )$ where $(A,\leq )$ is a weak ordering and $%
\preceq $ is a linear ordering on $A$ such that $A$ is partitioned by $%
\{a\in A:I_{i}(a)\}$ into maximal chains in the partial ordering $\leq $ and
each $\{a\in A:I_{i}(a)\}$ is an interval with respect to $\preceq $.
Keywords:Ramsey property, linear orderings Categories:05C55, 03C15, 54H20 
