Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CMB digital archive with keyword weights

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB 2011 (vol 55 pp. 303)

Han, Yongsheng; Lee, Ming-Yi; Lin, Chin-Cheng
Atomic Decomposition and Boundedness of Operators on Weighted Hardy Spaces
In this article, we establish a new atomic decomposition for $f\in L^2_w\cap H^p_w$, where the decomposition converges in $L^2_w$-norm rather than in the distribution sense. As applications of this decomposition, assuming that $T$ is a linear operator bounded on $L^2_w$ and $0
Keywords:$A_p$ weights, atomic decomposition, Calderón reproducing formula, weighted Hardy spaces
Categories:42B25, 42B30

2. CMB 2004 (vol 47 pp. 206)

Hurri-Syrjänen, Ritva
The Poincaré Inequality and Reverse Doubling Weights
We show that Poincar\'e inequalities with reverse doubling weights hold in a large class of irregular domains whenever the weights satisfy certain conditions. Examples of these domains are John domains.

Keywords:reverse doubling weights, Poincaré inequality, John domains

3. CMB 1999 (vol 42 pp. 198)

Guadalupe, José J.; Pérez, Mario; Varona, Juan L.
Commutators and Analytic Dependence of Fourier-Bessel Series on $(0,\infty)$
In this paper we study the boundedness of the commutators $[b, S_n]$ where $b$ is a $\BMO$ function and $S_n$ denotes the $n$-th partial sum of the Fourier-Bessel series on $(0,\infty)$. Perturbing the measure by $\exp(2b)$ we obtain that certain operators related to $S_n$ depend analytically on the functional parameter $b$.

Keywords:Fourier-Bessel series, commutators, BMO, $A_p$ weights

© Canadian Mathematical Society, 2014 :