Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CMB digital archive with keyword weakly compact operator

  Expand all        Collapse all Results 1 - 4 of 4

1. CMB 2011 (vol 56 pp. 65)

Ghenciu, Ioana
The Uncomplemented Subspace $\mathbf K(X,Y) $
A vector measure result is used to study the complementation of the space $K(X,Y)$ of compact operators in the spaces $W(X,Y)$ of weakly compact operators, $CC(X,Y)$ of completely continuous operators, and $U(X,Y)$ of unconditionally converging operators. Results of Kalton and Emmanuele concerning the complementation of $K(X,Y)$ in $L(X,Y)$ and in $W(X,Y)$ are generalized. The containment of $c_0$ and $\ell_\infty$ in spaces of operators is also studied.

Keywords:compact operators, weakly compact operators, uncomplemented subspaces of operators
Categories:46B20, 46B28

2. CMB 2011 (vol 55 pp. 449)

Bahreini, Manijeh; Bator, Elizabeth; Ghenciu, Ioana
Complemented Subspaces of Linear Bounded Operators
We study the complementation of the space $W(X,Y)$ of weakly compact operators, the space $K(X,Y)$ of compact operators, the space $U(X,Y)$ of unconditionally converging operators, and the space $CC(X,Y)$ of completely continuous operators in the space $L(X,Y)$ of bounded linear operators from $X$ to $Y$. Feder proved that if $X$ is infinite-dimensional and $c_0 \hookrightarrow Y$, then $K(X,Y)$ is uncomplemented in $L(X,Y)$. Emmanuele and John showed that if $c_0 \hookrightarrow K(X,Y)$, then $K(X,Y)$ is uncomplemented in $L(X,Y)$. Bator and Lewis showed that if $X$ is not a Grothendieck space and $c_0 \hookrightarrow Y$, then $W(X,Y)$ is uncomplemented in $L(X,Y)$. In this paper, classical results of Kalton and separably determined operator ideals with property $(*)$ are used to obtain complementation results that yield these theorems as corollaries.

Keywords:spaces of operators, complemented subspaces, compact operators, weakly compact operators, completely continuous operators
Categories:46B20, 46B28

3. CMB 2009 (vol 53 pp. 118)

Lewis, Paul
The Uncomplemented Spaces $W(X,Y)$ and $K(X,Y)$
Classical results of Kalton and techniques of Feder are used to study the complementation of the space $W(X, Y)$ of weakly compact operators and the space $K(X,Y)$ of compact operators in the space $L(X,Y)$ of all bounded linear maps from X to Y.

Keywords:spaces of operators, complemented subspace, weakly compact operator, basic sequence
Categories:46B28, 46B15, 46B20

4. CMB 1999 (vol 42 pp. 139)

Bonet, José; Domański, Paweł; Lindström, Mikael
Essential Norm and Weak Compactness of Composition Operators on Weighted Banach Spaces of Analytic Functions
Every weakly compact composition operator between weighted Banach spaces $H_v^{\infty}$ of analytic functions with weighted sup-norms is compact. Lower and upper estimates of the essential norm of continuous composition operators are obtained. The norms of the point evaluation functionals on the Banach space $H_v^{\infty}$ are also estimated, thus permitting to get new characterizations of compact composition operators between these spaces.

Keywords:weighted Banach spaces of holomorphic functions, composition operator, compact operator, weakly compact operator
Categories:47B38, 30D55, 46E15

© Canadian Mathematical Society, 2014 :