CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword variables

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB Online first

Fang, Zhong-Shan; Zhou, Ze-Hua
New Characterizations of the Weighted Composition Operators Between Bloch Type Spaces in the Polydisk
We give some new characterizations for compactness of weighted composition operators $uC_\varphi$ acting on Bloch-type spaces in terms of the power of the components of $\varphi,$ where $\varphi$ is a holomorphic self-map of the polydisk $\mathbb{D}^n,$ thus generalizing the results obtained by Hyvärinen and Lindström in 2012.

Keywords:weighted composition operator, compactness, Bloch type spaces, polydisk, several complex variables
Categories:47B38, 47B33, 32A37, 45P05, 47G10

2. CMB 2009 (vol 53 pp. 11)

Burke, Maxim R.
Approximation and Interpolation by Entire Functions of Several Variables
Let $f\colon \mathbb R^n\to \mathbb R$ be $C^\infty$ and let $h\colon \mathbb R^n\to\mathbb R$ be positive and continuous. For any unbounded nondecreasing sequence $\{c_k\}$ of nonnegative real numbers and for any sequence without accumulation points $\{x_m\}$ in $\mathbb R^n$, there exists an entire function $g\colon\mathbb C^n\to\mathbb C$ taking real values on $\mathbb R^n$ such that \begin{align*} &|g^{(\alpha)}(x)-f^{(\alpha)}(x)|\lt h(x), \quad |x|\ge c_k, |\alpha|\le k, k=0,1,2,\dots, \\ &g^{(\alpha)}(x_m)=f^{(\alpha)}(x_m), \quad |x_m|\ge c_k, |\alpha|\le k, m,k=0,1,2,\dots. \end{align*} This is a version for functions of several variables of the case $n=1$ due to L. Hoischen.

Keywords:entire function, complex approximation, interpolation, several complex variables
Category:32A15

3. CMB 2005 (vol 48 pp. 622)

Vénéreau, Stéphane
Hyperplanes of the Form ${f_1(x,y)z_1+\dots+f_k(x,y)z_k+g(x,y)}$ Are Variables
The Abhyankar--Sathaye Embedded Hyperplane Problem asks whe\-ther any hypersurface of $\C^n$ isomorphic to $\C^{n-1}$ is rectifiable, {\em i.e.,} equivalent to a linear hyperplane up to an automorphism of $\C^n$. Generalizing the approach adopted by Kaliman, V\'en\'ereau, and Zaidenberg which consists in using almost nothing but the acyclicity of $\C^{n-1}$, we solve this problem for hypersurfaces given by polynomials of $\C[x,y,z_1,\dots, z_k]$ as in the title.

Keywords:variables, Abhyankar--Sathaye Embedding Problem
Categories:14R10, 14R25

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/