1. CMB 2011 (vol 55 pp. 146)
 Li, Songxiao; Wulan, Hasi; Zhu, Kehe

A Characterization of Bergman Spaces on the Unit Ball of ${\mathbb C}^n$. II
It has been shown that a holomorphic function $f$ in the unit ball
$\mathbb{B}_n$ of ${\mathbb C}_n$ belongs to the weighted Bergman space $A^p_\alpha$,
$p>n+1+\alpha$, if and only if the function
$f(z)f(w)/1\langle z,w\rangle$ is in $L^p(\mathbb{B}_n\times\mathbb{B}_n,dv_\beta
\times dv_\beta)$, where $\beta=(p+\alphan1)/2$ and $dv_\beta(z)=
(1z^2)^\beta\,dv(z)$. In this paper
we consider the range $0 n+1+\alpha$ is
particularly interesting.
Keywords:Bergman spaces, unit ball, volume measure Category:32A36 
