Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CMB digital archive with keyword symbol

  Expand all        Collapse all Results 1 - 2 of 2

1. CMB 1999 (vol 42 pp. 463)

Hofmann, Steve; Li, Xinwei; Yang, Dachun
A Generalized Characterization of Commutators of Parabolic Singular Integrals
Let $x=(x_1, \dots, x_n)\in\rz$ and $\dz_\lz x=(\lz^{\az_1}x_1, \dots,\lz^{\az_n}x_n)$, where $\lz>0$ and $1\le \az_1\le\cdots \le\az_n$. Denote $|\az|=\az_1+\cdots+\az_n$. We characterize those functions $A(x)$ for which the parabolic Calder\'on commutator $$ T_{A}f(x)\equiv \pv \int_{\mathbb{R}^n} K(x-y)[A(x)-A(y)]f(y)\,dy $$ is bounded on $L^2(\mathbb{R}^n)$, where $K(\dz_\lz x)=\lz^{-|\az|-1}K(x)$, $K$ is smooth away from the origin and satisfies a certain cancellation property.

Keywords:parabolic singular integral, commutator, parabolic $\BMO$ sobolev space, homogeneous space, T1-theorem, symbol

2. CMB 1999 (vol 42 pp. 190)

Gilmer, Patrick M.
Topological Quantum Field Theory and Strong Shift Equivalence
Given a TQFT in dimension $d+1,$ and an infinite cyclic covering of a closed $(d+1)$-dimensional manifold $M$, we define an invariant taking values in a strong shift equivalence class of matrices. The notion of strong shift equivalence originated in R.~Williams' work in symbolic dynamics. The Turaev-Viro module associated to a TQFT and an infinite cyclic covering is then given by the Jordan form of this matrix away from zero. This invariant is also defined if the boundary of $M$ has an $S^1$ factor and the infinite cyclic cover of the boundary is standard. We define a variant of a TQFT associated to a finite group $G$ which has been studied by Quinn. In this way, we recover a link invariant due to D.~Silver and S.~Williams. We also obtain a variation on the Silver-Williams invariant, by using the TQFT associated to $G$ in its unmodified form.

Keywords:knot, link, TQFT, symbolic dynamics, shift equivalence
Categories:57R99, 57M99, 54H20

© Canadian Mathematical Society, 2014 :