Expand all Collapse all | Results 1 - 12 of 12 |
1. CMB 2014 (vol 57 pp. 765)
Helicoidal Minimal Surfaces in a Finsler Space of Randers Type We consider the Finsler space $(\bar{M}^3, \bar{F})$ obtained by
perturbing the Euclidean metric of $\mathbb{R}^3$ by a rotation. It
is the open region of $\mathbb{R}^3$ bounded by a cylinder with a
Randers metric. Using the Busemann-Hausdorff volume form, we
obtain the differential equation that characterizes the helicoidal
minimal surfaces in $\bar{M}^3$. We prove that the helicoid is a
minimal surface in $\bar{M}^3$, only if the axis of the helicoid
is the axis of the cylinder. Moreover, we prove that, in the
Randers space $(\bar{M}^3, \bar{F})$, the only minimal
surfaces in the Bonnet family, with fixed axis $O\bar{x}^3$, are the catenoids
and the helicoids.
Keywords:minimal surfaces, helicoidal surfaces, Finsler space, Randers space Categories:53A10, 53B40 |
2. CMB 2013 (vol 57 pp. 870)
A Short Note on Short Pants It is a theorem of Bers that any closed hyperbolic surface admits a pants decomposition consisting of curves of bounded length where the bound only depends on the topology of the surface. The question of the quantification of the optimal constants has been well studied and the best upper bounds to date are linear in genus, a theorem of Buser and SeppÃ¤lÃ¤. The goal of this note is to give a short proof of a linear upper bound which slightly improve the best known bound.
Keywords:hyperbolic surfaces, geodesics, pants decompositions Categories:30F10, 32G15, 53C22 |
3. CMB 2013 (vol 57 pp. 821)
Real Hypersurfaces in Complex Two-Plane Grassmannians with Reeb Parallel Structure Jacobi Operator In this paper we give a characterization of a real hypersurface of
Type~$(A)$ in complex two-plane Grassmannians ${ { {G_2({\mathbb
C}^{m+2})} } }$, which means a
tube over a totally geodesic $G_{2}(\mathbb C^{m+1})$ in
${G_2({\mathbb C}^{m+2})}$, by
the Reeb parallel structure Jacobi operator ${\nabla}_{\xi}R_{\xi}=0$.
Keywords:real hypersurfaces, complex two-plane Grassmannians, Hopf hypersurface, Reeb parallel, structure Jacobi operator Categories:53C40, 53C15 |
4. CMB 2011 (vol 55 pp. 26)
A Mahler Measure of a $K3$ Surface Expressed as a Dirichlet $L$-Series We present another example of a $3$-variable polynomial defining a $K3$-hypersurface
and having a logarithmic Mahler measure expressed in terms of a Dirichlet
$L$-series.
Keywords:modular Mahler measure, Eisenstein-Kronecker series, $L$-series of $K3$-surfaces, $l$-adic representations, LivnÃ© criterion, Rankin-Cohen brackets Categories:11, 14D, 14J |
5. CMB 2011 (vol 55 pp. 114)
On Characterizations of Real Hypersurfaces in a Complex Space Form with $\eta$-Parallel Shape Operator |
On Characterizations of Real Hypersurfaces in a Complex Space Form with $\eta$-Parallel Shape Operator In this paper we study real hypersurfaces in a non-flat complex space form with $\eta$-parallel shape operator. Several partial characterizations of these real hypersurfaces are obtained.
Keywords:complex space form, Hopf hypersurfaces, ruled real hypersurfaces, $\eta$-parallel shape operator Categories:53C40, 53C15 |
6. CMB 2011 (vol 54 pp. 311)
Some Remarks Concerning the Topological Characterization of Limit Sets for Surface Flows We give some extension to theorems of JimÃ©nez LÃ³pez and Soler LÃ³pez concerning the topological characterization for limit sets of continuous flows on closed orientable surfaces.
Keywords:flows on surfaces, orbits, class of an orbit, singularities, minimal set, limit set, regular cylinder Categories:37B20, 37E35 |
7. CMB 2009 (vol 52 pp. 493)
A One-Dimensional Family of $K3$ Surfaces with a $\Z_4$ Action The minimal resolution of the degree four cyclic cover of the plane
branched along a GIT stable quartic is a $K3$ surface with a non
symplectic action of $\Z_4$. In this paper
we study the geometry of the one-dimensional family of $K3$ surfaces
associated to the locus of plane quartics with five nodes.
Keywords:genus three curves, $K3$ surfaces Categories:14J28, 14J50, 14J10 |
8. CMB 2009 (vol 52 pp. 66)
Huber's Theorem for Hyperbolic Orbisurfaces We show that for compact orientable hyperbolic orbisurfaces, the
Laplace spectrum determines the length spectrum as well as the
number of singular points of a given order. The converse also holds, giving
a full generalization of Huber's theorem to the setting of
compact orientable hyperbolic orbisurfaces.
Keywords:Huber's theorem, length spectrum, isospectral, orbisurfaces Categories:58J53, 11F72 |
9. CMB 2006 (vol 49 pp. 560)
A K3 Surface Associated With Certain Integral Matrices Having Integral Eigenvalues In this article we will show that there are infinitely many
symmetric, integral $3 \times 3$ matrices, with zeros on the
diagonal, whose eigenvalues are all integral. We will do this by
proving that the rational points on a certain non-Kummer, singular
K3 surface
are dense. We will also compute the entire NÃ©ron-Severi group of
this surface and find all low degree curves on it.
Keywords:symmetric matrices, eigenvalues, elliptic surfaces, K3 surfaces, NÃ©ron--Severi group, rational curves, Diophantine equations, arithmetic geometry, algebraic geometry, number theory Categories:14G05, 14J28, 11D41 |
10. CMB 2004 (vol 47 pp. 22)
A Note on the Height of the Formal Brauer Group of a $K3$ Surface Using weighted Delsarte surfaces, we give examples of $K3$ surfaces
in positive characteristic whose formal Brauer groups have height
equal to $5$, $8$ or $9$. These are among the four values of the
height left open in the article of Yui \cite{Y}.
Keywords:formal Brauer groups, $K3$ surfaces in positive, characteristic, weighted Delsarte surfaces Categories:14L05, 14J28 |
11. CMB 2002 (vol 45 pp. 154)
On the Poisson Integral of Step Functions and Minimal Surfaces Applications of minimal surface methods are made to obtain information
about univalent harmonic mappings. In the case where the mapping arises
as the Poisson integral of a step function, lower bounds for the number
of zeros of the dilatation are obtained in terms of the geometry of the
image.
Keywords:harmonic mappings, dilatation, minimal surfaces Categories:30C62, 31A05, 31A20, 49Q05 |
12. CMB 2000 (vol 43 pp. 427)
Helices, Hasimoto Surfaces and BÃ¤cklund Transformations Travelling wave solutions to the vortex filament flow generated by
elastica produce surfaces in $\R^3$ that carry mutually orthogonal
foliations by geodesics and by helices. These surfaces are classified
in the special cases where the helices are all congruent or are all
generated by a single screw motion. The first case yields a new
characterization for the B\"acklund transformation for constant
torsion curves in $\R^3$, previously derived from the well-known
transformation for pseudospherical surfaces. A similar investigation
for surfaces in $H^3$ or $S^3$ leads to a new transformation for
constant torsion curves in those spaces that is also derived from
pseudospherical surfaces.
Keywords:surfaces, filament flow, BÃ¤cklund transformations Categories:53A05, 58F37, 52C42, 58A15 |