1. CMB Online first
 Li, Dan; Ma, Wanbiao

Dynamical Analysis of a StageStructured Model for Lyme Disease with two delays
In this paper, a
nonlinear stagestructured model for Lyme disease is considered.
The model is a system of differential equations with two time
delays. The basic reproductive rate, $R_0(\tau_1,\tau_2)$, is
derived. If $R_0(\tau_1,\tau_2)\lt 1$, then the boundary equilibrium
is globally asymptotically stable. If $R_0(\tau_1,\tau_2)\gt 1$,
then there exists
a unique positive equilibrium whose local asymptotical stability
and the existence of
Hopf bifurcations are established by analyzing the distribution
of the characteristic values.
An explicit algorithm for determining the direction of Hopf bifurcations
and the
stability of the bifurcating periodic solutions is derived by
using the normal form and
the center manifold theory. Some numerical simulations are performed
to confirm the correctness
of theoretical analysis. At last, some conclusions are given.
Keywords:Lyme disease, stagestructure, time delay, Lyapunov functional stability Hopf bifurcation. Category:34D20 

2. CMB 2014 (vol 58 pp. 30)
 Chung, Jaeyoung

On an Exponential Functional Inequality and its Distributional Version
Let $G$ be a group and $\mathbb K=\mathbb C$ or $\mathbb
R$.
In this article, as a generalization of the result of Albert
and Baker,
we investigate the behavior of bounded
and unbounded functions $f\colon G\to \mathbb K$ satisfying the inequality
$
\Biglf
\Bigl(\sum_{k=1}^n x_k
\Bigr)\prod_{k=1}^n f(x_k)
\Bigr\le \phi(x_2, \dots, x_n),\quad \forall\, x_1, \dots,
x_n\in G,
$
where $\phi\colon G^{n1}\to [0, \infty)$. Also, as a distributional
version of the above inequality we consider the stability of
the functional equation
\begin{equation*}
u\circ S  \overbrace{u\otimes \cdots \otimes u}^{n\text {times}}=0,
\end{equation*}
where $u$ is a Schwartz distribution or Gelfand hyperfunction,
$\circ$ and $\otimes$ are the pullback and tensor product of
distributions, respectively, and $S(x_1, \dots, x_n)=x_1+ \dots
+x_n$.
Keywords:distribution, exponential functional equation, Gelfand hyperfunction, stability Categories:46F99, 39B82 

3. CMB 2011 (vol 56 pp. 44)
4. CMB 2011 (vol 54 pp. 593)
 Boersema, Jeffrey L.; Ruiz, Efren

Stability of Real $C^*$Algebras
We will give a characterization of stable real $C^*$algebras
analogous to the one given for complex $C^*$algebras by Hjelmborg
and RÃ¸rdam. Using this result, we will prove
that any real $C^*$algebra satisfying the corona factorization
property is stable if and only if its complexification is stable.
Real $C^*$algebras satisfying the corona factorization property
include AFalgebras and purely infinite $C^*$algebras. We will also
provide an example of a simple unstable $C^*$algebra, the
complexification of which is stable.
Keywords:stability, real C*algebras Category:46L05 

5. CMB 2010 (vol 54 pp. 364)
6. CMB 2009 (vol 53 pp. 218)
 Biswas, Indranil

Restriction of the Tangent Bundle of $G/P$ to a Hypersurface
Let P be a maximal proper parabolic subgroup of a connected simple linear algebraic group G, defined over $\mathbb C$, such that $n := \dim_{\mathbb C} G/P \geq 4$. Let $\iota \colon Z \hookrightarrow G/P$ be a reduced smooth hypersurface of degree at least $(n1)\cdot \operatorname{degree}(T(G/P))/n$. We prove that the restriction of the tangent bundle $\iota^*TG/P$ is semistable.
Keywords:tangent bundle, homogeneous space, semistability, hypersurface Categories:14F05, 14J60, 14M15 

7. CMB 2006 (vol 49 pp. 358)
 Khalil, Abdelouahed El; Manouni, Said El; Ouanan, Mohammed

On the Principal Eigencurve of the $p$Laplacian: Stability Phenomena
We show that each point of the principal eigencurve of the
nonlinear problem
$$
\Delta_{p}u\lambda m(x)u^{p2}u=\muu^{p2}u \quad
\text{in } \Omega,
$$
is stable (continuous) with respect to the exponent $p$ varying in
$(1,\infty)$; we also prove some convergence results
of the principal eigenfunctions corresponding.
Keywords:$p$Laplacian with indefinite weight, principal eigencurve, principal eigenvalue, principal eigenfunction, stability Categories:35P30, 35P60, 35J70 

8. CMB 2000 (vol 43 pp. 418)
 Gong, Guihua; Jiang, Xinhui; Su, Hongbing

Obstructions to $\mathcal{Z}$Stability for Unital Simple $C^*$Algebras
Let $\cZ$ be the unital simple nuclear infinite dimensional
$C^*$algebra which has the same Elliott invariant as $\bbC$,
introduced in \cite{JS}. A $C^*$algebra is called $\cZ$stable
if $A \cong A \otimes \cZ$. In this note we give some necessary
conditions for a unital simple $C^*$algebra to be $\cZ$stable.
Keywords:simple $C^*$algebra, $\mathcal{Z}$stability, weak (un)perforation in $K_0$ group, property $\Gamma$, finiteness Category:46L05 

9. CMB 1998 (vol 41 pp. 49)
 Harrison, K. J.; Ward, J. A.; Eaton, LJ.

Stability of weighted darma filters
We study the stability of linear filters associated with certain types of
linear difference equations with variable coefficients. We show that
stability is determined by the locations of the poles of a rational transfer
function relative to the spectrum of an associated weighted shift operator.
The known theory for filters associated with constantcoefficient difference
equations is a special case.
Keywords:Difference equations, adaptive $\DARMA$ filters, weighted shifts,, stability and boundedness, automatic continuity Categories:47A62, 47B37, 93D25, 42A85, 47N70 
