1. CMB Online first
 Liu, Ye

On chromatic functors and stable partitions of graphs
The chromatic functor of a simple graph is a functorization of
the chromatic polynomial. M. Yoshinaga showed
that two finite graphs have isomorphic chromatic functors if
and only if they have the same chromatic polynomial. The key
ingredient in the proof is the use of stable partitions of graphs.
The latter is shown to be closely related to chromatic functors.
In this note, we further investigate some interesting properties
of chromatic functors associated to simple graphs using stable
partitions. Our first result is the determination of the group
of natural automorphisms of the chromatic functor, which is in
general a larger group than the automorphism group of the graph.
The second result is that the composition of the chromatic functor
associated to a finite graph restricted to the category $\mathrm{FI}$
of finite sets and injections with the free functor into the
category of complex vector spaces yields a consistent sequence
of representations of symmetric groups which is representation
stable in the sense of ChurchFarb.
Keywords:chromatic functor, stable partition, representation stability Categories:05C15, 20C30 

2. CMB Online first
 Nah, Kyeongah; Röst, Gergely

Stability threshold for scalar linear periodic delay differential equations
We prove that for the linear scalar delay differential
equation
$$ \dot{x}(t) =  a(t)x(t) + b(t)x(t1) $$
with nonnegative periodic coefficients of period $P\gt 0$, the
stability threshold for the trivial solution is
$r:=\int_{0}^{P}
\left(b(t)a(t)
\right)\mathrm{d}t=0,$
assuming that $b(t+1)a(t)$ does not change its sign. By constructing
a class of explicit examples, we show the counterintuitive result
that in general, $r=0$ is not a stability threshold.
Keywords:delay differential equation, stability, periodic system Categories:34K20, 34K06 

3. CMB Online first
 Chung, Jaeyoung; Ju, Yumin; Rassias, John

Cubic functional equations on restricted domains of Lebesgue measure zero
Let $X$ be a real normed space, $Y$ a Bancch space and $f:X \to
Y$.
We prove the UlamHyers stability theorem
for the cubic functional equation
\begin{align*}
f(2x+y)+f(2xy)2f(x+y)2f(xy)12f(x)=0
\end{align*}
in restricted domains. As an application we consider a measure
zero stability problem
of the inequality
\begin{align*}
\f(2x+y)+f(2xy)2f(x+y)2f(xy)12f(x)\\le \epsilon
\end{align*}
for all $(x, y)$ in $\Gamma\subset\mathbb R^2$ of Lebesgue measure
0.
Keywords:Baire category theorem, cubic functional equation, first category, Lebesgue measure, UlamHyers stability Category:39B82 

4. CMB Online first
 Osserman, Brian

Stability of vector bundles on curves and degenerations
We introduce a weaker notion of (semi)stability for vector bundles
on
reducible curves which does not depend on a choice of polarization,
and
which suffices for many applications of degeneration techniques.
We explore the basic
properties of this alternate notion of (semi)stability. In a
complementary
direction, we record a proof of the existence of semistable extensions
of vector bundles in suitable degenerations.
Keywords:vector bundle, stability, degeneration Categories:14D06, 14H60 

5. CMB 2016 (vol 59 pp. 363)
 Li, Dan; Ma, Wanbiao

Dynamical Analysis of a StageStructured Model for Lyme Disease with Two Delays
In this paper, a
nonlinear stagestructured model for Lyme disease is considered.
The model is a system of differential equations with two time
delays. The basic reproductive rate, $R_0(\tau_1,\tau_2)$, is
derived. If $R_0(\tau_1,\tau_2)\lt 1$, then the boundary equilibrium
is globally asymptotically stable. If $R_0(\tau_1,\tau_2)\gt 1$,
then there exists
a unique positive equilibrium whose local asymptotical stability
and the existence of
Hopf bifurcations are established by analyzing the distribution
of the characteristic values.
An explicit algorithm for determining the direction of Hopf bifurcations
and the
stability of the bifurcating periodic solutions is derived by
using the normal form and
the center manifold theory. Some numerical simulations are performed
to confirm the correctness
of theoretical analysis. At last, some conclusions are given.
Keywords:Lyme disease, stagestructure, time delay, Lyapunov functional stability Hopf bifurcation. Category:34D20 

6. CMB 2014 (vol 58 pp. 30)
 Chung, Jaeyoung

On an Exponential Functional Inequality and its Distributional Version
Let $G$ be a group and $\mathbb K=\mathbb C$ or $\mathbb
R$.
In this article, as a generalization of the result of Albert
and Baker,
we investigate the behavior of bounded
and unbounded functions $f\colon G\to \mathbb K$ satisfying the inequality
$
\Biglf
\Bigl(\sum_{k=1}^n x_k
\Bigr)\prod_{k=1}^n f(x_k)
\Bigr\le \phi(x_2, \dots, x_n),\quad \forall\, x_1, \dots,
x_n\in G,
$
where $\phi\colon G^{n1}\to [0, \infty)$. Also, as a distributional
version of the above inequality we consider the stability of
the functional equation
\begin{equation*}
u\circ S  \overbrace{u\otimes \cdots \otimes u}^{n\text {times}}=0,
\end{equation*}
where $u$ is a Schwartz distribution or Gelfand hyperfunction,
$\circ$ and $\otimes$ are the pullback and tensor product of
distributions, respectively, and $S(x_1, \dots, x_n)=x_1+ \dots
+x_n$.
Keywords:distribution, exponential functional equation, Gelfand hyperfunction, stability Categories:46F99, 39B82 

7. CMB 2011 (vol 56 pp. 44)
8. CMB 2011 (vol 54 pp. 593)
 Boersema, Jeffrey L.; Ruiz, Efren

Stability of Real $C^*$Algebras
We will give a characterization of stable real $C^*$algebras
analogous to the one given for complex $C^*$algebras by Hjelmborg
and RÃ¸rdam. Using this result, we will prove
that any real $C^*$algebra satisfying the corona factorization
property is stable if and only if its complexification is stable.
Real $C^*$algebras satisfying the corona factorization property
include AFalgebras and purely infinite $C^*$algebras. We will also
provide an example of a simple unstable $C^*$algebra, the
complexification of which is stable.
Keywords:stability, real C*algebras Category:46L05 

9. CMB 2010 (vol 54 pp. 364)
10. CMB 2009 (vol 53 pp. 218)
 Biswas, Indranil

Restriction of the Tangent Bundle of $G/P$ to a Hypersurface
Let P be a maximal proper parabolic subgroup of a connected simple linear algebraic group G, defined over $\mathbb C$, such that $n := \dim_{\mathbb C} G/P \geq 4$. Let $\iota \colon Z \hookrightarrow G/P$ be a reduced smooth hypersurface of degree at least $(n1)\cdot \operatorname{degree}(T(G/P))/n$. We prove that the restriction of the tangent bundle $\iota^*TG/P$ is semistable.
Keywords:tangent bundle, homogeneous space, semistability, hypersurface Categories:14F05, 14J60, 14M15 

11. CMB 2006 (vol 49 pp. 358)
 Khalil, Abdelouahed El; Manouni, Said El; Ouanan, Mohammed

On the Principal Eigencurve of the $p$Laplacian: Stability Phenomena
We show that each point of the principal eigencurve of the
nonlinear problem
$$
\Delta_{p}u\lambda m(x)u^{p2}u=\muu^{p2}u \quad
\text{in } \Omega,
$$
is stable (continuous) with respect to the exponent $p$ varying in
$(1,\infty)$; we also prove some convergence results
of the principal eigenfunctions corresponding.
Keywords:$p$Laplacian with indefinite weight, principal eigencurve, principal eigenvalue, principal eigenfunction, stability Categories:35P30, 35P60, 35J70 

12. CMB 2000 (vol 43 pp. 418)
 Gong, Guihua; Jiang, Xinhui; Su, Hongbing

Obstructions to $\mathcal{Z}$Stability for Unital Simple $C^*$Algebras
Let $\cZ$ be the unital simple nuclear infinite dimensional
$C^*$algebra which has the same Elliott invariant as $\bbC$,
introduced in \cite{JS}. A $C^*$algebra is called $\cZ$stable
if $A \cong A \otimes \cZ$. In this note we give some necessary
conditions for a unital simple $C^*$algebra to be $\cZ$stable.
Keywords:simple $C^*$algebra, $\mathcal{Z}$stability, weak (un)perforation in $K_0$ group, property $\Gamma$, finiteness Category:46L05 

13. CMB 1998 (vol 41 pp. 49)
 Harrison, K. J.; Ward, J. A.; Eaton, LJ.

Stability of weighted darma filters
We study the stability of linear filters associated with certain types of
linear difference equations with variable coefficients. We show that
stability is determined by the locations of the poles of a rational transfer
function relative to the spectrum of an associated weighted shift operator.
The known theory for filters associated with constantcoefficient difference
equations is a special case.
Keywords:Difference equations, adaptive $\DARMA$ filters, weighted shifts,, stability and boundedness, automatic continuity Categories:47A62, 47B37, 93D25, 42A85, 47N70 
