1. CMB Online first
 Alfuraidan, Monther Rashed

The Contraction Principle for Multivalued Mappings on a Modular Metric Space with a Graph
We study the existence of fixed points for contraction multivalued
mappings in modular metric spaces endowed with a graph. The
notion of a modular metric on an arbitrary set and the corresponding
modular spaces, generalizing classical modulars over linear spaces
like Orlicz spaces, were recently introduced. This paper can
be seen as a generalization of Nadler's and Edelstein's fixed
point theorems to modular metric spaces endowed with a graph.
Keywords:fixed point theory, modular metric spaces, multivalued contraction mapping, connected digraph. Categories:47H09, 46B20, 47H10, 47E10 

2. CMB Online first
3. CMB 2015 (vol 58 pp. 459)
 Casini, Emanuele; Miglierina, Enrico; Piasecki, Lukasz

Hyperplanes in the Space of Convergent Sequences and Preduals of $\ell_1$
The main aim of the present paper is to investigate various structural
properties
of hyperplanes of $c$, the Banach space of the convergent sequences.
In particular, we give an explicit formula for the projection
constants and we prove that an hyperplane of $c$ is isometric
to the whole space if and only if it is $1$complemented. Moreover,
we obtain the classification
of those hyperplanes for which their duals are isometric to
$\ell_{1}$ and we give a complete description of the preduals
of $\ell_{1}$ under the assumption that the standard basis of
$\ell_{1}$
is weak$^{*}$convergent.
Keywords:space of convergent sequences, projection, $\ell_1$predual, hyperplane Categories:46B45, 46B04 

4. CMB Online first
 He, Ziyi; Yang, Dachun; Yuan, Wen

LittlewoodPaley Characterizations of SecondOrder Sobolev Spaces via Averages on Balls
In this paper, the authors characterize secondorder Sobolev
spaces $W^{2,p}({\mathbb R}^n)$,
with $p\in [2,\infty)$ and $n\in\mathbb N$ or $p\in (1,2)$ and
$n\in\{1,2,3\}$, via the Lusin area
function and the LittlewoodPaley $g_\lambda^\ast$function in
terms of ball means.
Keywords:Sobolev space, ball means, Lusinarea function, $g_\lambda^*$function Categories:46E35, 42B25, 42B20, 42B35 

5. CMB 2015 (vol 58 pp. 596)
 Ongaro, Jared; Shapiro, Boris

A Note on Planarity Stratification of Hurwitz Spaces
One can easily show that any meromorphic function
on a complex closed Riemann surface can be represented as a
composition of a birational map of this surface to $\mathbb{CP}^2$ and
a projection of the image curve from an appropriate point
$p\in \mathbb{CP}^2$ to the pencil of lines through $p$. We introduce
a natural stratification of Hurwitz spaces according to the
minimal degree of a plane curve such that a given meromorphic
function can be represented in the above way and calculate the
dimensions of these strata. We observe that they are closely
related to a family of Severi varieties studied earlier by J. Harris,
Z. Ran and I. Tyomkin.
Keywords:Hurwitz spaces, meromorphic functions, Severi varieties 

6. CMB 2015 (vol 58 pp. 271)
7. CMB 2015 (vol 58 pp. 350)
 MerinoCruz, Héctor; Wawrzynczyk, Antoni

On Closed Ideals in a Certain Class of Algebras of Holomorphic Functions
We recently introduced a weighted Banach algebra $\mathfrak{A}_G^n$ of
functions which are holomorphic on the unit disc $\mathbb{D}$, continuous
up to the boundary and of the class $C^{(n)}$ at all points where
the function $G$ does not vanish. Here, $G$ refers to a function
of the disc algebra without zeros on $\mathbb{D}$. Then we proved that
all closed ideals in $\mathfrak{A}_G^n$ with at most countable hull are
standard. In the present paper, on the assumption that $G$ is
an outer function in $C^{(n)}(\overline{\mathbb{D}})$ having infinite roots
in $\mathfrak{A}_G^n$ and countable zero set $h(G)$, we show that all the
closed ideals $I$ with hull containing $h(G)$ are standard.
Keywords:Banach algebra, disc algebra, holomorphic spaces, standard ideal Categories:46J15, 46J20, 30H50 

8. CMB 2015 (vol 58 pp. 507)
 Hsu, MingHsiu; Lee, MingYi

VMO Space Associated with Parabolic Sections and its Application
In this paper we define $VMO_\mathcal{P}$ space associated with
a family $\mathcal{P}$ of parabolic sections and show that the
dual of $VMO_\mathcal{P}$ is the Hardy space $H^1_\mathcal{P}$.
As an application, we prove that almost everywhere convergence
of a bounded sequence in $H^1_\mathcal{P}$ implies weak* convergence.
Keywords:MongeAmpere equation, parabolic section, Hardy space, BMO, VMO Category:42B30 

9. CMB Online first
 Anona, F. M.; Randriambololondrantomalala, Princy; Ravelonirina, H. S. G.

Sur les algÃ¨bres de Lie associÃ©es Ã une connexion
Let $\Gamma$ be a connection on a smooth manifold
$M$, in this paper we give some properties of $\Gamma$ by studying
the corresponding Lie algebras. In particular, we compute the
first ChevalleyEilenberg cohomology space of the horizontal
vector fields Lie algebra on the tangent bundle of $M$, whose
the corresponding Lie derivative of $\Gamma$ is null, and of
the horizontal nullity curvature space.
Keywords:algÃ¨bre de Lie, connexion, cohomologie de ChevalleyEilenberg, champs dont la dÃ©rivÃ©e de Lie correspondante Ã une connexion est nulle, espace de nullitÃ© de la courbure Categories:17B66, 53B15 

10. CMB Online first
 Liu, Feng; Wu, Huoxiong

On the Regularity of the Multisublinear Maximal Functions
This paper is concerned with the study of
the regularity for the multisublinear maximal operator. It is
proved that the multisublinear maximal operator is bounded on
firstorder Sobolev spaces. Moreover, two key pointwise
inequalities for the partial derivatives of the multisublinear
maximal functions are established. As an application, the
quasicontinuity on the multisublinear maximal function is also
obtained.
Keywords:regularity, multisublinear maximal operator, Sobolev spaces, partial deviative, quasicontinuity Categories:42B25, 46E35 

11. CMB 2015 (vol 58 pp. 241)
 Botelho, Fernanda

Isometries and Hermitian Operators on Zygmund Spaces
In this paper we characterize the isometries of subspaces of the little Zygmund space. We show that the isometries of these spaces are surjective and represented as integral operators. We also show that all hermitian operators on these settings are bounded.
Keywords:Zygmund spaces, the little Zygmund space, Hermitian operators, surjective linear isometries, generators of oneparameter groups of surjective isometries Categories:46E15, 47B15, 47B38 

12. CMB 2014 (vol 58 pp. 432)
 Yang, Dachun; Yang, Sibei

Secondorder Riesz Transforms and Maximal Inequalities Associated with Magnetic SchrÃ¶dinger Operators
Let $A:=(\nablai\vec{a})\cdot(\nablai\vec{a})+V$ be a
magnetic SchrÃ¶dinger operator on $\mathbb{R}^n$,
where $\vec{a}:=(a_1,\dots, a_n)\in L^2_{\mathrm{loc}}(\mathbb{R}^n,\mathbb{R}^n)$
and $0\le V\in L^1_{\mathrm{loc}}(\mathbb{R}^n)$ satisfy some reverse
HÃ¶lder conditions.
Let $\varphi\colon \mathbb{R}^n\times[0,\infty)\to[0,\infty)$ be such that
$\varphi(x,\cdot)$ for any given $x\in\mathbb{R}^n$ is an Orlicz function,
$\varphi(\cdot,t)\in {\mathbb A}_{\infty}(\mathbb{R}^n)$ for all $t\in (0,\infty)$
(the class of uniformly Muckenhoupt weights) and its uniformly critical upper type index
$I(\varphi)\in(0,1]$. In this article, the authors prove that
secondorder Riesz transforms $VA^{1}$ and
$(\nablai\vec{a})^2A^{1}$ are bounded from the
MusielakOrliczHardy space $H_{\varphi,\,A}(\mathbb{R}^n)$, associated with $A$,
to the MusielakOrlicz space $L^{\varphi}(\mathbb{R}^n)$. Moreover, the authors
establish the boundedness of $VA^{1}$ on $H_{\varphi, A}(\mathbb{R}^n)$. As applications, some
maximal inequalities associated with $A$ in the scale of $H_{\varphi,
A}(\mathbb{R}^n)$ are obtained.
Keywords:MusielakOrliczHardy space, magnetic SchrÃ¶dinger operator, atom, secondorder Riesz transform, maximal inequality Categories:42B30, 42B35, 42B25, 35J10, 42B37, 46E30 

13. CMB 2014 (vol 58 pp. 150)
 Ostrovskii, Mikhail I.

Connections Between Metric Characterizations of Superreflexivity and the RadonNikodÃ½ Property for Dual Banach Spaces
Johnson and Schechtman (2009)
characterized superreflexivity in terms of finite diamond graphs.
The present author characterized the RadonNikodÃ½m property
(RNP) for dual spaces in terms of the infinite diamond. This
paper
is devoted to further study of relations between metric
characterizations of superreflexivity and the RNP for dual spaces.
The main result is that finite subsets of any set $M$ whose
embeddability characterizes the RNP for dual spaces, characterize
superreflexivity. It is also observed that the converse statement
does not hold, and that $M=\ell_2$ is a counterexample.
Keywords:Banach space, diamond graph, finite representability, metric characterization, RadonNikodÃ½m property, superreflexivity Categories:46B85, 46B07, 46B22 

14. CMB 2014 (vol 58 pp. 158)
15. CMB 2014 (vol 58 pp. 128)
 Marković, Marijan

A Sharp Constant for the Bergman Projection
For the Bergman projection operator $P$ we prove that
\begin{equation*}
\P\colon L^1(B,d\lambda)\rightarrow B_1\ = \frac {(2n+1)!}{n!}.
\end{equation*}
Here $\lambda$ stands for the hyperbolic metric in the unit ball $B$ of
$\mathbb{C}^n$, and $B_1$ denotes the Besov space with an adequate
seminorm. We also consider a generalization of this result. This generalizes
some recent results due to PerÃ¤lÃ¤.
Keywords:Bergman projections, Besov spaces Categories:45P05, 47B35 

16. CMB 2014 (vol 57 pp. 749)
 Cavalieri, Renzo; Marcus, Steffen

Geometric Perspective on Piecewise Polynomiality of Double Hurwitz Numbers
We describe double Hurwitz numbers as intersection numbers on the
moduli space of curves $\overline{\mathcal{M}}_{g,n}$. Using a result on the
polynomiality of intersection numbers of psi classes with the Double
Ramification Cycle, our formula explains the polynomiality in chambers
of double Hurwitz numbers, and the wall crossing phenomenon in terms
of a variation of correction terms to the $\psi$ classes. We
interpret this as suggestive evidence for polynomiality of the Double
Ramification Cycle (which is only known in genera $0$ and $1$).
Keywords:double Hurwitz numbers, wall crossings, moduli spaces, ELSV formula Category:14N35 

17. CMB 2014 (vol 58 pp. 297)
 Khamsi, M. A.

Approximate Fixed Point Sequences of Nonlinear Semigroup in Metric Spaces
In this paper, we investigate the common
approximate fixed point sequences of nonexpansive semigroups of
nonlinear mappings $\{T_t\}_{t \geq 0}$, i.e., a family such that
$T_0(x)=x$, $T_{s+t}=T_s(T_t(x))$, where the domain is a metric space
$(M,d)$. In particular we prove that under suitable conditions, the
common approximate fixed point sequences set is the same as the common
approximate fixed point sequences set of two mappings from the family.
Then we use the Ishikawa iteration to construct a common approximate
fixed point sequence of nonexpansive semigroups of nonlinear
mappings.
Keywords:approximate fixed point, fixed point, hyperbolic metric space, Ishikawa iterations, nonexpansive mapping, semigroup of mappings, uniformly convex hyperbolic space Categories:47H09, 46B20, 47H10, 47E10 

18. CMB 2014 (vol 57 pp. 803)
 Gabriyelyan, S. S.

Free Locally Convex Spaces and the $k$space Property
Let $L(X)$ be the free locally convex space over a Tychonoff space $X$. Then $L(X)$ is a $k$space if and only if $X$ is a countable discrete space. We prove also that $L(D)$ has uncountable tightness for every uncountable discrete space $D$.
Keywords:free locally convex space, $k$space, countable tightness Categories:46A03, 54D50, 54A25 

19. CMB 2014 (vol 57 pp. 780)
 Erzakova, Nina A.

Measures of Noncompactness in Regular Spaces
Previous results by the author on the connection
between three of measures
of noncompactness obtained for $L_p$, are extended
to regular spaces of measurable
functions.
An example of advantage
in some cases one of them in comparison with another is given.
Geometric characteristics of regular spaces are determined.
New theorems for $(k,\beta)$boundedness of partially additive
operators are proved.
Keywords:measure of noncompactness, condensing map, partially additive operator, regular space, ideal space Categories:47H08, 46E30, 47H99, 47G10 

20. CMB 2014 (vol 57 pp. 683)
 Aurichi, Leandro F.; Dias, Rodrigo R.

Topological Games and Alster Spaces
In this paper we study connections between topological games
such
as Rothberger, Menger and compactopen, and relate these games
to
properties involving covers by $G_\delta$ subsets. The results
include:
(1) If Two has a winning strategy in the Menger
game on a regular space $X$, then $X$ is an Alster space.
(2) If Two has a winning strategy in the Rothberger game on a
topological space $X$, then the $G_\delta$topology on $X$ is
LindelÃ¶f.
(3) The Menger game and the compactopen game are (consistently)
not
dual.
Keywords:topological games, selection principles, Alster spaces, Menger spaces, Rothberger spaces, Menger game, Rothberger game, compactopen game, $G_\delta$topology Categories:54D20, 54G99, 54A10 

21. CMB 2014 (vol 57 pp. 765)
 da Silva, Rosângela Maria; Tenenblat, Keti

Helicoidal Minimal Surfaces in a Finsler Space of Randers Type
We consider the Finsler space $(\bar{M}^3, \bar{F})$ obtained by
perturbing the Euclidean metric of $\mathbb{R}^3$ by a rotation. It
is the open region of $\mathbb{R}^3$ bounded by a cylinder with a
Randers metric. Using the BusemannHausdorff volume form, we
obtain the differential equation that characterizes the helicoidal
minimal surfaces in $\bar{M}^3$. We prove that the helicoid is a
minimal surface in $\bar{M}^3$, only if the axis of the helicoid
is the axis of the cylinder. Moreover, we prove that, in the
Randers space $(\bar{M}^3, \bar{F})$, the only minimal
surfaces in the Bonnet family, with fixed axis $O\bar{x}^3$, are the catenoids
and the helicoids.
Keywords:minimal surfaces, helicoidal surfaces, Finsler space, Randers space Categories:53A10, 53B40 

22. CMB 2013 (vol 57 pp. 794)
 Fang, ZhongShan; Zhou, ZeHua

New Characterizations of the Weighted Composition Operators Between Bloch Type Spaces in the Polydisk
We give some new characterizations for compactness of weighted
composition operators $uC_\varphi$ acting on Blochtype spaces in
terms of the power of the components of $\varphi,$ where $\varphi$
is a holomorphic selfmap of the polydisk $\mathbb{D}^n,$ thus
generalizing the results obtained by HyvÃ¤rinen and
LindstrÃ¶m in 2012.
Keywords:weighted composition operator, compactness, Bloch type spaces, polydisk, several complex variables Categories:47B38, 47B33, 32A37, 45P05, 47G10 

23. CMB 2013 (vol 57 pp. 598)
 Lu, Yufeng; Yang, Dachun; Yuan, Wen

Interpolation of Morrey Spaces on Metric Measure Spaces
In this article, via the classical complex interpolation method
and some interpolation methods traced to Gagliardo,
the authors obtain an interpolation theorem for
Morrey spaces on quasimetric measure spaces, which generalizes
some known results on ${\mathbb R}^n$.
Keywords:complex interpolation, Morrey space, Gagliardo interpolation, CalderÃ³n product, quasimetric measure space Categories:46B70, 46E30 

24. CMB 2012 (vol 57 pp. 90)
 Lazar, Aldo J.

Compact Subsets of the Glimm Space of a $C^*$algebra
If $A$ is a $\sigma$unital $C^*$algebra and $a$ is a strictly positive element of $A$ then for every compact subset $K$ of the complete
regularization $\mathrm{Glimm}(A)$ of $\mathrm{Prim}(A)$ there exists
$\alpha \gt 0$ such that $K\subset \{G\in \mathrm{Glimm}(A) \mid \Vert a + G\Vert \geq
\alpha\}$. This extends
a result of J. Dauns
to all $\sigma$unital $C^*$algebras. However, there are a $C^*$algebra $A$
and a compact subset of $\mathrm{Glimm}(A)$ that is not contained in any set of the form $\{G\in \mathrm{Glimm}(A) \mid \Vert a + G\Vert \geq
\alpha\}$, $a\in A$ and $\alpha \gt 0$.
Keywords:primitive ideal space, complete regularization Category:46L05 

25. CMB 2012 (vol 57 pp. 42)
 Fonf, Vladimir P.; Zanco, Clemente

Covering the Unit Sphere of Certain Banach Spaces by Sequences of Slices and Balls
e prove that, given any covering of any infinitedimensional Hilbert space $H$ by countably many closed balls, some point exists in $H$ which belongs to infinitely many balls. We do that by characterizing isomorphically polyhedral separable Banach spaces as those whose unit sphere admits a pointfinite covering by the union of countably many slices of the unit ball.
Keywords:point finite coverings, slices, polyhedral spaces, Hilbert spaces Categories:46B20, 46C05, 52C17 
