Expand all Collapse all  Results 1  6 of 6 
1. CMB Online first
Compact Commutators of Rough Singular Integral Operators Let $b\in \mathrm{BMO}(\mathbb{R}^n)$ and $T_{\Omega}$ be the singular
integral operator with kernel $\frac{\Omega(x)}{x^n}$, where
$\Omega$ is homogeneous of degree zero, integrable and has mean
value zero on the unit sphere $S^{n1}$. In this paper, by Fourier
transform estimates and approximation to the operator $T_{\Omega}$
by integral operators with smooth kernels, it is proved that if
$b\in \mathrm{CMO}(\mathbb{R}^n)$ and $\Omega$ satisfies a certain
minimal size condition, then the commutator generated by $b$ and
$T_{\Omega}$ is a compact operator on $L^p(\mathbb{R}^n)$ for
appropriate index $p$. The associated maximal operator is also
considered.
Keywords:commutator,singular integral operator, compact operator, maximal operator Category:42B20 
2. CMB 2008 (vol 51 pp. 386)
Positive Solutions of the FalknerSkan Equation Arising in the Boundary Layer Theory The wellknown FalknerSkan equation is one of the most important
equations in laminar boundary layer theory and is used to describe
the steady twodimensional flow of a slightly viscous
incompressible fluid past wedge shaped bodies of angles related to
$\lambda\pi/2$, where $\lambda\in \mathbb R$ is a parameter
involved in the equation. It is known that there exists
$\lambda^{*}<0$ such that the equation with suitable boundary
conditions has at least one positive solution for each $\lambda\ge
\lambda^{*}$ and has no positive solutions for
$\lambda<\lambda^{*}$. The known numerical result shows
$\lambda^{*}=0.1988$. In this paper, $\lambda^{*}\in
[0.4,0.12]$ is proved analytically by establishing a singular
integral equation which is equivalent to the FalknerSkan
equation. The equivalence result
provides new techniques to study properties and existence of solutions of
the FalknerSkan equation.
Keywords:FalknerSkan equation, boundary layer problems, singular integral equation, positive solutions Categories:34B16, 34B18, 34B40, 76D10 
3. CMB 2006 (vol 49 pp. 3)
On a Class of Singular Integral Operators With Rough Kernels In this paper, we study the $L^p$ mapping properties of a class of singular
integral operators with rough kernels belonging to certain block spaces. We
prove that our operators are bounded on $L^p$ provided that their kernels
satisfy a size condition much weaker than that for the classical
Calder\'{o}nZygmund singular integral operators. Moreover, we present an
example showing that our size condition is optimal. As a consequence of our
results, we substantially improve a previously known result on certain maximal
functions.
Keywords:Singular integrals, Rough kernels, Square functions,, Maximal functions, Block spaces Categories:42B20, 42B15, 42B25 
4. CMB 1999 (vol 42 pp. 463)
A Generalized Characterization of Commutators of Parabolic Singular Integrals Let $x=(x_1, \dots, x_n)\in\rz$ and $\dz_\lz x=(\lz^{\az_1}x_1,
\dots,\lz^{\az_n}x_n)$, where $\lz>0$ and $1\le \az_1\le\cdots
\le\az_n$. Denote $\az=\az_1+\cdots+\az_n$. We characterize those
functions $A(x)$ for which the parabolic Calder\'on commutator
$$
T_{A}f(x)\equiv \pv \int_{\mathbb{R}^n}
K(xy)[A(x)A(y)]f(y)\,dy
$$
is bounded on $L^2(\mathbb{R}^n)$, where $K(\dz_\lz x)=\lz^{\az1}K(x)$,
$K$ is smooth away from the origin and satisfies a certain cancellation
property.
Keywords:parabolic singular integral, commutator, parabolic $\BMO$ sobolev space, homogeneous space, T1theorem, symbol Category:42B20 
5. CMB 1998 (vol 41 pp. 404)
$L^p$boundedness of a singular integral operator Let $b(t)$ be an $L^\infty$ function on $\bR$, $\Omega (\,y')$ be
an $H^1$ function on the unit sphere satisfying the mean zero
property (1) and $Q_m(t)$ be a real polynomial on $\bR$ of degree
$m$ satisfying $Q_m(0)=0$. We prove that the singular integral
operator
$$
T_{Q_m,b} (\,f) (x)=p.v. \int_\bR^n b(y) \Omega(\,y) y^{n} f
\left( xQ_m (y) y' \right) \,dy
$$
is bounded in $L^p (\bR^n)$ for $1

6. CMB 1998 (vol 41 pp. 196)
BrownHalmos type theorems of weighted Toeplitz operators The spectra of the Toeplitz operators on the weighted Hardy space
$H^2(Wd\th/2\pi)$ and the Hardy space $H^p(d\th/2\pi)$, and the
singular integral operators on the Lebesgue space $L^2(d\th/2\pi)$
are studied. For example, the theorems of BrownHalmos type and
HartmanWintner type are studied.
Keywords:Toeplitz operator, singular integral, operator, weighted Hardy space, spectrum. Category:47B35 