CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword sets

  Expand all        Collapse all Results 1 - 14 of 14

1. CMB Online first

Ghenciu, Ioana
Limited Sets and Bibasic Sequences
Bibasic sequences are used to study relative weak compactness and relative norm compactness of limited sets.

Keywords:limited sets, $L$-sets, bibasic sequences, the Dunford-Pettis property
Categories:46B20, 46B28, 28B05

2. CMB Online first

Schoen, Tomasz
On Convolutions of Convex Sets and Related Problems
We prove some results concerning covolutions, the additive energy and sumsets of convex sets and its generalizations. In particular, we show that if a set $A=\{a_1,\dots,a_n\}_\lt \subseteq \mathbb R$ has the property that for every fixed $1\leqslant d\lt n,$ all differences $a_i-a_{i-d}$, $d\lt i\lt n,$ are distinct, then $|A+A|\gg |A|^{3/2+c}$ for a constant $c\gt 0.$

Keywords:convex sets, additive energy, sumsets
Category:11B99

3. CMB Online first

Heil, Wolfgang; Wang, Dongxu
On $3$-manifolds with Torus- or Klein-bottle Category Two
A subset $W$ of a closed manifold $M$ is $K$-contractible, where $K$ is a torus or Kleinbottle, if the inclusion $W\rightarrow M$ factors homotopically through a map to $K$. The image of $\pi_1 (W)$ (for any base point) is a subgroup of $\pi_1 (M)$ that is isomorphic to a subgroup of a quotient group of $\pi_1 (K)$. Subsets of $M$ with this latter property are called $\mathcal{G}_K$-contractible. We obtain a list of the closed $3$-manifolds that can be covered by two open $\mathcal{G}_K$-contractible subsets. This is applied to obtain a list of the possible closed prime $3$-manifolds that can be covered by two open $K$-contractible subsets.

Keywords:Lusternik--Schnirelmann category, coverings of $3$-manifolds by open $K$-contractible sets
Categories:57N10, 55M30, 57M27, 57N16

4. CMB 2012 (vol 57 pp. 240)

Bernardes, Nilson C.
Addendum to ``Limit Sets of Typical Homeomorphisms''
Given an integer $n \geq 3$, a metrizable compact topological $n$-manifold $X$ with boundary, and a finite positive Borel measure $\mu$ on $X$, we prove that for the typical homeomorphism $f : X \to X$, it is true that for $\mu$-almost every point $x$ in $X$ the restriction of $f$ (respectively of $f^{-1}$) to the omega limit set $\omega(f,x)$ (respectively to the alpha limit set $\alpha(f,x)$) is topologically conjugate to the universal odometer.

Keywords:topological manifolds, homeomorphisms, measures, Baire category, limit sets
Categories:37B20, 54H20, 28C15, 54C35, 54E52

5. CMB 2011 (vol 55 pp. 418)

Vinh, Le Anh
Maximal Sets of Pairwise Orthogonal Vectors in Finite Fields
Given a positive integer $n$, a finite field $\mathbb{F}_q$ of $q$ elements ($q$ odd), and a non-degenerate symmetric bilinear form $B$ on $\mathbb{F}_q^n$, we determine the largest possible cardinality of pairwise $B$-orthogonal subsets $\mathcal{E} \subseteq \mathbb{F}_q^n$, that is, for any two vectors $\mathbf{x}, \mathbf{y} \in \mathcal{E}$, one has $B (\mathbf{x}, \mathbf{y}) = 0$.

Keywords:orthogonal sets, zero-distance sets
Category:05B25

6. CMB 2011 (vol 56 pp. 354)

Hare, Kathryn E.; Mendivil, Franklin; Zuberman, Leandro
The Sizes of Rearrangements of Cantor Sets
A linear Cantor set $C$ with zero Lebesgue measure is associated with the countable collection of the bounded complementary open intervals. A rearrangment of $C$ has the same lengths of its complementary intervals, but with different locations. We study the Hausdorff and packing $h$-measures and dimensional properties of the set of all rearrangments of some given $C$ for general dimension functions $h$. For each set of complementary lengths, we construct a Cantor set rearrangement which has the maximal Hausdorff and the minimal packing $h$-premeasure, up to a constant. We also show that if the packing measure of this Cantor set is positive, then there is a rearrangement which has infinite packing measure.

Keywords:Hausdorff dimension, packing dimension, dimension functions, Cantor sets, cut-out set
Categories:28A78, 28A80

7. CMB 2011 (vol 55 pp. 523)

Iwase, Norio; Mimura, Mamoru; Oda, Nobuyuki; Yoon, Yeon Soo
The Milnor-Stasheff Filtration on Spaces and Generalized Cyclic Maps
The concept of $C_{k}$-spaces is introduced, situated at an intermediate stage between $H$-spaces and $T$-spaces. The $C_{k}$-space corresponds to the $k$-th Milnor-Stasheff filtration on spaces. It is proved that a space $X$ is a $C_{k}$-space if and only if the Gottlieb set $G(Z,X)=[Z,X]$ for any space $Z$ with ${\rm cat}\, Z\le k$, which generalizes the fact that $X$ is a $T$-space if and only if $G(\Sigma B,X)=[\Sigma B,X]$ for any space $B$. Some results on the $C_{k}$-space are generalized to the $C_{k}^{f}$-space for a map $f\colon A \to X$. Projective spaces, lens spaces and spaces with a few cells are studied as examples of $C_{k}$-spaces, and non-$C_{k}$-spaces.

Keywords:Gottlieb sets for maps, L-S category, T-spaces
Categories:55P45, 55P35

8. CMB 2011 (vol 55 pp. 487)

Deng, Xinghua; Moody, Robert V.
Weighted Model Sets and their Higher Point-Correlations
Examples of distinct weighted model sets with equal $2,3,4, 5$-point correlations are given.

Keywords:model sets, correlations, diffraction
Categories:52C23, 51P05, 74E15, 60G55

9. CMB 2011 (vol 55 pp. 225)

Bernardes, Nilson C.
Limit Sets of Typical Homeomorphisms
Given an integer $n \geq 3$, a metrizable compact topological $n$-manifold $X$ with boundary, and a finite positive Borel measure $\mu$ on $X$, we prove that for the typical homeomorphism $f \colon X \to X$, it is true that for $\mu$-almost every point $x$ in $X$ the limit set $\omega(f,x)$ is a Cantor set of Hausdorff dimension zero, each point of $\omega(f,x)$ has a dense orbit in $\omega(f,x)$, $f$ is non-sensitive at each point of $\omega(f,x)$, and the function $a \to \omega(f,a)$ is continuous at $x$.

Keywords:topological manifolds, homeomorphisms, measures, Baire category, limit sets
Categories:37B20, 54H20, 28C15, 54C35, 54E52

10. CMB 2007 (vol 50 pp. 579)

Kot, Piotr
$p$-Radial Exceptional Sets and Conformal Mappings
For $p>0$ and for a given set $E$ of type $G_{\delta}$ in the boundary of the unit disc $\partial\mathbb D$ we construct a holomorphic function $f\in\mathbb O(\mathbb D)$ such that \[ \int_{\mathbb D\setminus[0,1]E}|ft|^{p}\,d\mathfrak{L}^{2}<\infty\] and\[ E=E^{p}(f)=\Bigl\{ z\in\partial\mathbb D:\int_{0}^{1}|f(tz)|^{p}\,dt=\infty\Bigr\} .\] In particular if a set $E$ has a measure equal to zero, then a function $f$ is constructed as integrable with power $p$ on the unit disc $\mathbb D$.

Keywords:boundary behaviour of holomorphic functions, exceptional sets
Categories:30B30, 30E25

11. CMB 2007 (vol 50 pp. 123)

Nikolov, Nikolai; Pflug, Peter
Simultaneous Approximation and Interpolation on Arakelian Sets
We extend results of P.~M. Gauthier, W. Hengartner and A.~A. Nersesyan on simultaneous approximation and interpolation on Arakelian sets.

Keywords:Arakelian's theorem,, Arakelian sets
Category:30E10

12. CMB 2006 (vol 49 pp. 256)

Neelon, Tejinder
A Bernstein--Walsh Type Inequality and Applications
A Bernstein--Walsh type inequality for $C^{\infty }$ functions of several variables is derived, which then is applied to obtain analogs and generalizations of the following classical theorems: (1) Bochnak--Siciak theorem: a $C^{\infty }$\ function on $\mathbb{R}^{n}$ that is real analytic on every line is real analytic; (2) Zorn--Lelong theorem: if a double power series $F(x,y)$\ converges on a set of lines of positive capacity then $F(x,y)$\ is convergent; (3) Abhyankar--Moh--Sathaye theorem: the transfinite diameter of the convergence set of a divergent series is zero.

Keywords:Bernstein-Walsh inequality, convergence sets, analytic functions, ultradifferentiable functions, formal power series
Categories:32A05, 26E05

13. CMB 2005 (vol 48 pp. 580)

Kot, Piotr
Exceptional Sets in Hartogs Domains
Assume that $\Omega$ is a Hartogs domain in $\mathbb{C}^{1+n}$, defined as $\Omega=\{(z,w)\in\mathbb{C}^{1+n}:|z|<\mu(w),w\in H\}$, where $H$ is an open set in $\mathbb{C}^{n}$ and $\mu$ is a continuous function with positive values in $H$ such that $-\ln\mu$ is a strongly plurisubharmonic function in $H$. Let $\Omega_{w}=\Omega\cap(\mathbb{C}\times\{w\})$. For a given set $E$ contained in $H$ of the type $G_{\delta}$ we construct a holomorphic function $f\in\mathbb{O}(\Omega)$ such that \[ E=\Bigl\{ w\in\mathbb{C}^{n}:\int_{\Omega_{w}}|f(\cdot\,,w)|^{2}\,d\mathfrak{L}^{2}=\infty\Bigr\}. \]

Keywords:boundary behaviour of holomorphic functions,, exceptional sets
Category:30B30

14. CMB 2002 (vol 45 pp. 483)

Baake, Michael
Diffraction of Weighted Lattice Subsets
A Dirac comb of point measures in Euclidean space with bounded complex weights that is supported on a lattice $\varGamma$ inherits certain general properties from the lattice structure. In particular, its autocorrelation admits a factorization into a continuous function and the uniform lattice Dirac comb, and its diffraction measure is periodic, with the dual lattice $\varGamma^*$ as lattice of periods. This statement remains true in the setting of a locally compact Abelian group whose topology has a countable base.

Keywords:diffraction, Dirac combs, lattice subsets, homometric sets
Categories:52C07, 43A25, 52C23, 43A05

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/