CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword sequence spaces

  Expand all        Collapse all Results 1 - 2 of 2

1. CMB 2011 (vol 56 pp. 388)

Mursaleen, M.
Application of Measure of Noncompactness to Infinite Systems of Differential Equations
In this paper we determine the Hausdorff measure of noncompactness on the sequence space $n(\phi)$ of W. L. C. Sargent. Further we apply the technique of measures of noncompactness to the theory of infinite systems of differential equations in the Banach sequence spaces $n(\phi)$ and $m(\phi)$. Our aim is to present some existence results for infinite systems of differential equations formulated with the help of measures of noncompactness.

Keywords:sequence spaces, BK spaces, measure of noncompactness, infinite system of differential equations
Categories:46B15, 46B45, 46B50, 34A34, 34G20

2. CMB 2010 (vol 54 pp. 527)

Preda, Ciprian; Sipos, Ciprian
On the Dichotomy of the Evolution Families: A Discrete-Argument Approach
We establish a discrete-time criteria guaranteeing the existence of an exponential dichotomy in the continuous-time behavior of an abstract evolution family. We prove that an evolution family ${\cal U}=\{U(t,s)\}_{t \geq s\geq 0}$ acting on a Banach space $X$ is uniformly exponentially dichotomic (with respect to its continuous-time behavior) if and only if the corresponding difference equation with the inhomogeneous term from a vector-valued Orlicz sequence space $l^\Phi(\mathbb{N}, X)$ admits a solution in the same $l^\Phi(\mathbb{N},X)$. The technique of proof effectively eliminates the continuity hypothesis on the evolution family (\emph{i.e.,} we do not assume that $U(\,\cdot\,,s)x$ or $U(t,\,\cdot\,)x$ is continuous on $[s,\infty)$, and respectively $[0,t]$). Thus, some known results given by Coffman and Schaffer, Perron, and Ta Li are extended.

Keywords:evolution families, exponential dichotomy, Orlicz sequence spaces, admissibility
Categories:34D05, 47D06, 93D20

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/