1. CMB Online first
2. CMB 2010 (vol 54 pp. 100)
 Fan, Dashan; Wu, Huoxiong

On the Generalized Marcinkiewicz Integral Operators with Rough Kernels
A class of generalized Marcinkiewicz
integral operators is introduced, and, under rather weak conditions
on the integral kernels, the boundedness of such operators on $L^p$
and TriebelLizorkin spaces is established.
Keywords: Marcinkiewicz integral, LittlewoodPaley theory, TriebelLizorkin space, rough kernel, product domain Categories:42B20, , , , , 42B25, 42B30, 42B99 

3. CMB 2009 (vol 52 pp. 521)
4. CMB 2006 (vol 49 pp. 3)
 AlSalman, Ahmad

On a Class of Singular Integral Operators With Rough Kernels
In this paper, we study the $L^p$ mapping properties of a class of singular
integral operators with rough kernels belonging to certain block spaces. We
prove that our operators are bounded on $L^p$ provided that their kernels
satisfy a size condition much weaker than that for the classical
Calder\'{o}nZygmund singular integral operators. Moreover, we present an
example showing that our size condition is optimal. As a consequence of our
results, we substantially improve a previously known result on certain maximal
functions.
Keywords:Singular integrals, Rough kernels, Square functions,, Maximal functions, Block spaces Categories:42B20, 42B15, 42B25 

5. CMB 1998 (vol 41 pp. 404)
 AlHasan, Abdelnaser J.; Fan, Dashan

$L^p$boundedness of a singular integral operator
Let $b(t)$ be an $L^\infty$ function on $\bR$, $\Omega (\,y')$ be
an $H^1$ function on the unit sphere satisfying the mean zero
property (1) and $Q_m(t)$ be a real polynomial on $\bR$ of degree
$m$ satisfying $Q_m(0)=0$. We prove that the singular integral
operator
$$
T_{Q_m,b} (\,f) (x)=p.v. \int_\bR^n b(y) \Omega(\,y) y^{n} f
\left( xQ_m (y) y' \right) \,dy
$$
is bounded in $L^p (\bR^n)$ for $1
Keywords:singular integral, rough kernel, Hardy space Category:42B20 
