Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CMB digital archive with keyword resolution

  Expand all        Collapse all Results 1 - 4 of 4

1. CMB 2016 (vol 59 pp. 528)

Jahan, Qaiser
Characterization of Low-pass Filters on Local Fields of Positive Characteristic
In this article, we give necessary and sufficient conditions on a function to be a low-pass filter on a local field $K$ of positive characteristic associated to the scaling function for multiresolution analysis of $L^2(K)$. We use probability and martingale methods to provide such a characterization.

Keywords:multiresolution analysis, local field, low-pass filter, scaling function, probability, conditional probability and martingales
Categories:42C40, 42C15, 43A70, 11S85

2. CMB 2005 (vol 48 pp. 69)

Fabian, M.; Montesinos, V.; Zizler, V.
Biorthogonal Systems in Weakly Lindelöf Spaces
We study countable splitting of Markushevich bases in weakly Lindel\"of Banach spaces in connection with the geometry of these spaces.

Keywords:Weak compactness, projectional resolutions,, Markushevich bases, Eberlein compacts, Va\v sák spaces
Categories:46B03, 46B20., 46B26

3. CMB 2000 (vol 43 pp. 3)

Adin, Ron; Blanc, David
Resolutions of Associative and Lie Algebras
Certain canonical resolutions are described for free associative and free Lie algebras in the category of non-associative algebras. These resolutions derive in both cases from geometric objects, which in turn reflect the combinatorics of suitable collections of leaf-labeled trees.

Keywords:resolutions, homology, Lie algebras, associative algebras, non-associative algebras, Jacobi identity, leaf-labeled trees, associahedron
Categories:18G10, 05C05, 16S10, 17B01, 17A50, 18G50

4. CMB 1997 (vol 40 pp. 395)

Boudhraa, Zineddine
$D$-spaces and resolution
A space $X$ is a $D$-space if, for every neighborhood assignment $f$ there is a closed discrete set $D$ such that $\bigcup{f(D)}=X$. In this paper we give some necessary conditions and some sufficient conditions for a resolution of a topological space to be a $D$-space. In particular, if a space $X$ is resolved at each $x\in X$ into a $D$-space $Y_x$ by continuous mappings $f_x\colon X-\{{x}\} \rightarrow Y_x$, then the resolution is a $D$-space if and only if $\bigcup{\{{x}\}}\times \Bd(Y_x)$ is a $D$-space.

Keywords:$D$-space, neighborhood assignment, resolution, boundary
Categories:54D20, 54B99, 54D10, 54D30

© Canadian Mathematical Society, 2016 :