Expand all Collapse all | Results 1 - 17 of 17 |
1. CMB Online first
Irreducible Tuples without Boundary Property We examine spectral behavior of irreducible tuples which do not
admit boundary property. In particular, we prove under some mild
assumption that the spectral radius of such an $m$-tuple $(T_1,
\dots, T_m)$ must be the operator norm of $T^*_1T_1 + \cdots +
T^*_mT_m$. We use this simple observation to ensure boundary
property for an irreducible, essentially normal joint $q$-isometry provided it
is not a joint isometry.
We further exhibit a family of
reproducing Hilbert $\mathbb{C}[z_1, \dots, z_m]$-modules (of which
the Drury-Arveson Hilbert module is a prototype) with the property that any
two nested unitarily equivalent submodules are indeed equal.
Keywords:boundary representations, subnormal, joint p-isometry Categories:47A13, 46E22 |
2. CMB 2013 (vol 57 pp. 439)
The Fixed Point Locus of the Verschiebung on $\mathcal{M}_X(2, 0)$ for Genus-2 Curves $X$ in Charateristic $2$ |
The Fixed Point Locus of the Verschiebung on $\mathcal{M}_X(2, 0)$ for Genus-2 Curves $X$ in Charateristic $2$ We prove that for every ordinary genus-$2$ curve $X$ over a finite
field $\kappa$ of characteristic $2$ with
$\textrm{Aut}(X/\kappa)=\mathbb{Z}/2\mathbb{Z} \times S_3$, there exist
$\textrm{SL}(2,\kappa[\![s]\!])$-representations of $\pi_1(X)$ such
that the image of $\pi_1(\overline{X})$ is infinite. This result
produces a family of examples similar to Laszlo's counterexample
to de Jong's question regarding the finiteness of the geometric
monodromy of representations of the fundamental group.
Keywords:vector bundle, Frobenius pullback, representation, etale fundamental group Categories:14H60, 14D05, 14G15 |
3. CMB 2013 (vol 57 pp. 357)
Representation Equivalent Bieberbach Groups and Strongly Isospectral Flat Manifolds Let $\Gamma_1$ and $\Gamma_2$ be Bieberbach groups contained in the
full isometry group $G$ of $\mathbb{R}^n$.
We prove that if the compact flat manifolds $\Gamma_1\backslash\mathbb{R}^n$ and
$\Gamma_2\backslash\mathbb{R}^n$ are strongly isospectral then the Bieberbach groups
$\Gamma_1$ and $\Gamma_2$ are representation equivalent, that is, the
right regular representations $L^2(\Gamma_1\backslash G)$ and
$L^2(\Gamma_2\backslash G)$ are unitarily equivalent.
Keywords:representation equivalent, strongly isospectrality, compact flat manifolds Categories:58J53, 22D10 |
4. CMB 2012 (vol 56 pp. 647)
On Induced Representations Distinguished by Orthogonal Groups Let $F$ be a local non-archimedean field of characteristic zero. We
prove that a representation of $GL(n,F)$ obtained from irreducible
parabolic induction of supercuspidal representations is distinguished
by an orthogonal group only if the inducing data is distinguished by
appropriate orthogonal groups. As a corollary, we get that an
irreducible representation induced from supercuspidals that is
distinguished by an orthogonal group is metic.
Keywords:distinguished representation, parabolic induction Category:22E50 |
5. CMB 2012 (vol 56 pp. 534)
A Cohomological Property of $\pi$-invariant Elements Let $A$ be a Banach algebra and $\pi \colon A \longrightarrow \mathscr L(H)$
be a continuous representation of $A$ on a separable Hilbert space $H$
with $\dim H =\frak m$. Let $\pi_{ij}$ be the coordinate functions of
$\pi$ with respect to an orthonormal basis and suppose that for each
$1\le j \le \frak m$, $C_j=\sum_{i=1}^{\frak m}
\|\pi_{ij}\|_{A^*}\lt \infty$ and $\sup_j C_j\lt \infty$. Under these
conditions, we call an element $\overline\Phi \in l^\infty (\frak m , A^{**})$
left $\pi$-invariant if $a\cdot \overline\Phi ={}^t\pi (a) \overline\Phi$ for all
$a\in A$. In this paper we prove a link between the existence
of left $\pi$-invariant elements and the vanishing of certain
Hochschild cohomology groups of $A$. Our results extend an earlier
result by Lau on $F$-algebras and recent results of Kaniuth-Lau-Pym
and the second named author in the special case that $\pi \colon A
\longrightarrow \mathbf C$ is a non-zero character on $A$.
Keywords:Banach algebras, $\pi$-invariance, derivations, representations Categories:46H15, 46H25, 13N15 |
6. CMB 2011 (vol 56 pp. 272)
On Super Weakly Compact Convex Sets and Representation of the Dual of the Normed Semigroup They Generate |
On Super Weakly Compact Convex Sets and Representation of the Dual of the Normed Semigroup They Generate In this note, we first give a characterization of super weakly
compact convex sets of a Banach space $X$:
a closed bounded convex set $K\subset X$ is
super weakly compact if and only if there exists a $w^*$ lower
semicontinuous seminorm $p$ with $p\geq\sigma_K\equiv\sup_{x\in
K}\langle\,\cdot\,,x\rangle$ such that $p^2$ is uniformly FrÃ©chet
differentiable on each bounded set of $X^*$. Then we present a
representation theorem for the dual of the semigroup $\textrm{swcc}(X)$
consisting of all the nonempty super weakly compact convex sets of the
space $X$.
Keywords:super weakly compact set, dual of normed semigroup, uniform FrÃ©chet differentiability, representation Categories:20M30, 46B10, 46B20, 46E15, 46J10, 49J50 |
7. CMB 2011 (vol 56 pp. 13)
Ordering the Representations of $S_n$ Using the Interchange Process Inspired by Aldous' conjecture for
the spectral gap of the interchange process and its recent
resolution by Caputo, Liggett, and Richthammer, we define
an associated order $\prec$ on the irreducible representations of $S_n$. Aldous'
conjecture is equivalent to certain representations being comparable
in this order, and hence determining the ``Aldous order'' completely is a
generalized question. We show a few additional entries for this order.
Keywords:Aldous' conjecture, interchange process, symmetric group, representations Categories:82C22, 60B15, 43A65, 20B30, 60J27, 60K35 |
8. CMB 2011 (vol 56 pp. 218)
Functional Equations and Fourier Analysis By exploring the relations among functional equations, harmonic analysis and representation theory,
we give a unified and very accessible approach to solve three important functional equations -
the d'Alembert equation, the Wilson equation, and the d'Alembert long equation -
on compact groups.
Keywords:functional equations, Fourier analysis, representation of compact groups Categories:39B52, 22C05, 43A30 |
9. CMB 2011 (vol 55 pp. 26)
A Mahler Measure of a $K3$ Surface Expressed as a Dirichlet $L$-Series We present another example of a $3$-variable polynomial defining a $K3$-hypersurface
and having a logarithmic Mahler measure expressed in terms of a Dirichlet
$L$-series.
Keywords:modular Mahler measure, Eisenstein-Kronecker series, $L$-series of $K3$-surfaces, $l$-adic representations, LivnÃ© criterion, Rankin-Cohen brackets Categories:11, 14D, 14J |
10. CMB 2009 (vol 52 pp. 39)
A Representation Theorem for Archimedean Quadratic Modules on $*$-Rings We present a new approach to noncommutative real algebraic geometry
based on the representation theory of $C^\ast$-algebras.
An important result in commutative real algebraic geometry is
Jacobi's representation theorem for archimedean quadratic modules
on commutative rings.
We show that this theorem is a consequence of the
Gelfand--Naimark representation theorem for commutative $C^\ast$-algebras.
A noncommutative version of Gelfand--Naimark theory was studied by
I. Fujimoto. We use his results to generalize
Jacobi's theorem to associative rings with involution.
Keywords:Ordered rings with involution, $C^\ast$-algebras and their representations, noncommutative convexity theory, real algebraic geometry Categories:16W80, 46L05, 46L89, 14P99 |
11. CMB 2009 (vol 52 pp. 9)
On the Spectrum of an $n!\times n!$ Matrix Originating from Statistical Mechanics Let $R_n(\alpha)$ be the $n!\times n!$ matrix whose matrix elements
$[R_n(\alpha)]_{\sigma\rho}$, with $\sigma$ and $\rho$ in the
symmetric group $\sn$, are $\alpha^{\ell(\sigma\rho^{-1})}$ with
$0<\alpha<1$, where $\ell(\pi)$ denotes the number of cycles in $\pi\in
\sn$. We give the spectrum of $R_n$ and show that the ratio of the
largest eigenvalue $\lambda_0$ to the second largest one (in absolute
value) increases as a positive power of $n$ as $n\rightarrow \infty$.
Keywords:symmetric group, representation theory, eigenvalue, statistical physics Categories:20B30, 20C30, 15A18, 82B20, 82B28 |
12. CMB 2008 (vol 51 pp. 584)
On Tensor Products of Polynomial Representations We determine the necessary and sufficient combinatorial
conditions for which the tensor product of two irreducible polynomial
representations of $\GL(n,\mathbb{C})$ is isomorphic to another.
As a consequence we discover families of Littlewood--Richardson
coefficients that are non-zero, and a condition on Schur non-negativity.
Keywords:polynomial representation, symmetric function, Littlewood--Richardson coefficient, Schur non-negative Categories:05E05, 05E10, 20C30 |
13. CMB 2007 (vol 50 pp. 85)
Classification of Finite Group-Frames and Super-Frames Given a finite group $G$, we examine the classification of all
frame representations of $G$ and the classification of all
$G$-frames, \emph{i.e.,} frames induced by group representations of $G$.
We show that the exact number of equivalence classes of $G$-frames
and the exact number of frame representations can be explicitly
calculated. We also discuss how to calculate the largest number
$L$ such that there exists an $L$-tuple of strongly disjoint
$G$-frames.
Keywords:frames, group-frames, frame representations, disjoint frames Categories:42C15, 46C05, 47B10 |
14. CMB 2006 (vol 49 pp. 55)
Non Abelian Twisted Reidemeister Torsion for Fibered Knots In this article, we give an explicit formula to compute the
non abelian twisted sign-deter\-mined Reidemeister torsion of the
exterior of a fibered knot in terms of its monodromy. As an
application, we give explicit formulae for the non abelian
Reidemeister torsion of torus knots and of the figure eight knot.
Keywords:Reidemeister torsion, Fibered knots, Knot groups, Representation space, $\SU$, $\SL$, Adjoint representation, Monodromy Categories:57Q10, 57M27, 57M25 |
15. CMB 2002 (vol 45 pp. 337)
Surjectivity of $\mod\ell$ Representations Attached to Elliptic Curves and Congruence Primes For a modular elliptic curve $E/\mathbb{Q}$, we show a number of
links between the primes $\ell$ for which the mod $\ell$
representation of $E/\mathbb{Q}$ has projective dihedral image and
congruence primes for the newform associated to $E/\mathbb{Q}$.
Keywords:torsion points of elliptic curves, Galois representations, congruence primes, Serre tori, grossencharacters, non-split Cartan Categories:11G05, 11F80 |
16. CMB 2002 (vol 45 pp. 272)
The Transfer in the Invariant Theory of Modular Permutation Representations II In this note we show that the image of the transfer for permutation
representations of finite groups is generated by the transfers of
special monomials. This leads to a description of the image of the
transfer of the alternating groups. We also determine the height of
these ideals.
Keywords:polynomial invariants of finite groups, permutation representation, transfer Category:13A50 |
17. CMB 2001 (vol 44 pp. 313)
Images of mod $p$ Galois Representations Associated to Elliptic Curves We give an explicit recipe for the determination of the images
associated to the Galois action on $p$-torsion points of elliptic
curves. We present a table listing the image for all the elliptic
curves defined over $\QQ$ without complex multiplication with
conductor less than 200 and for each prime number~$p$.
Keywords:Galois groups, elliptic curves, Galois representation, isogeny Categories:11R32, 11G05, 12F10, 14K02 |