1. CMB Online first
 Wang, Long; CastroGonzalez, Nieves; Chen, Jianlong

Characterizations of outer generalized inverses
Let $R$
be a ring and $b, c\in R$.
In this paper, we give some characterizations of the $(b,c)$inverse,
in terms of the direct sum decomposition, the annihilator and
the invertible elements.
Moreover, elements with equal $(b,c)$idempotents related to
their $(b, c)$inverses are characterized, and the reverse order
rule for the $(b,c)$inverse is considered.
Keywords:$(b, c)$inverse, $(b, c)$idempotent, regularity, imagekernel $(p, q)$inverse, ring Categories:15A09, 16U99 

2. CMB 2016 (vol 60 pp. 122)
 Ghanei, Mohammad Reza; NasrIsfahani, Rasoul; Nemati, Mehdi

A Homological Property and Arens Regularity of Locally Compact Quantum Groups
We characterize two important notions of amenability and compactness
of
a locally compact quantum group ${\mathbb G}$ in terms of certain
homological
properties. For this, we show that ${\mathbb G}$ is character
amenable if and only if it is both amenable and coamenable.
We finally apply our results to
Arens regularity problems of the quantum group algebra
$L^1({\mathbb G})$; in particular, we improve an interesting result
by Hu, Neufang and Ruan.
Keywords:amenability, Arens regularity, coamenability, locally compact quantum group, homological property Categories:46L89, 43A07, 46H20, 46M10, 58B32 

3. CMB 2015 (vol 59 pp. 73)
 Gasiński, Leszek; Papageorgiou, Nikolaos S.

Positive Solutions for the Generalized Nonlinear Logistic Equations
We consider a nonlinear parametric elliptic equation driven
by a nonhomogeneous differential
operator with a logistic reaction of the superdiffusive type.
Using variational methods coupled with suitable truncation
and comparison techniques,
we prove a bifurcation type result describing the set of positive
solutions
as the parameter varies.
Keywords:positive solution, bifurcation type result, strong comparison principle, nonlinear regularity, nonlinear maximum principle Categories:35J25, 35J92 

4. CMB 2015 (vol 58 pp. 320)
 Llamas, Aurora; MartínezBernal, José

Cover Product and Betti Polynomial of Graphs
For disjoint graphs $G$ and $H$, with fixed
vertex covers
$C(G)$ and $C(H)$, their cover product is the graph $G
\circledast
H$ with vertex set
$V(G)\cup V(H)$ and edge set $E(G)\cup E(H)\cup\{\{i,j\}:i\in
C(G), j\in
C(H)\}$. We describe the graded Betti numbers of $G\circledast
H$ in terms of those of
$G$ and $H$. As applications we obtain: (i) For any positive
integer $k$ there
exists a connected bipartite graph $G$ such that $\operatorname{reg}
R/I(G)=\mu_S(G)+k$, where,
$I(G)$ denotes the edge ideal of $G$, $\operatorname{reg} R/I(G)$
is the CastelnuovoMumford
regularity of $R/I(G)$ and $\mu_S(G)$ is the induced or strong
matching number of
$G$; (ii) The graded Betti numbers of the complement of a tree
only depends upon
its number of vertices; (iii) The $h$vector of $R/I(G\circledast
H)$ is described in
terms of the $h$vectors of $R/I(G)$ and $R/I(H)$. Furthermore,
in a different
direction, we give a recursive formula for the graded Betti numbers
of chordal
bipartite graphs.
Keywords:CastelnuovoMumford regularity, chordal bipartite graph, edge ideal, graded Betti number, induced matching number, monomial ideal Categories:13D02, 05E45 

5. CMB 2015 (vol 58 pp. 808)
 Liu, Feng; Wu, Huoxiong

On the Regularity of the Multisublinear Maximal Functions
This paper is concerned with the study of
the regularity for the multisublinear maximal operator. It is
proved that the multisublinear maximal operator is bounded on
firstorder Sobolev spaces. Moreover, two key pointwise
inequalities for the partial derivatives of the multisublinear
maximal functions are established. As an application, the
quasicontinuity on the multisublinear maximal function is also
obtained.
Keywords:regularity, multisublinear maximal operator, Sobolev spaces, partial deviative, quasicontinuity Categories:42B25, 46E35 

6. CMB 2013 (vol 57 pp. 546)
 Kalantar, Mehrdad

Compact Operators in Regular LCQ Groups
We show that a regular locally compact quantum group $\mathbb{G}$ is discrete
if and only if $\mathcal{L}^{\infty}(\mathbb{G})$ contains nonzero compact operators on
$\mathcal{L}^{2}(\mathbb{G})$.
As a corollary we classify all discrete quantum groups among
regular locally compact quantum groups $\mathbb{G}$ where
$\mathcal{L}^{1}(\mathbb{G})$ has the RadonNikodym property.
Keywords:locally compact quantum groups, regularity, compact operators Category:46L89 

7. CMB 2011 (vol 54 pp. 472)
 Iacono, Donatella

A Semiregularity Map Annihilating Obstructions to Deforming Holomorphic Maps
We study infinitesimal deformations of holomorphic maps of
compact, complex, KÃ¤hler manifolds. In particular, we describe a
generalization of Bloch's semiregularity map that annihilates
obstructions to deform holomorphic maps with fixed codomain.
Keywords:semiregularity map, obstruction theory, functors of Artin rings, differential graded Lie algebras Categories:13D10, 14D15, 14B10 

8. CMB 2000 (vol 43 pp. 25)
 Bounkhel, M.; Thibault, L.

Subdifferential Regularity of Directionally Lipschitzian Functions
Formulas for the Clarke subdifferential are always expressed in the
form of inclusion. The equality form in these formulas generally
requires the functions to be directionally regular. This paper
studies the directional regularity of the general class of
extendedrealvalued functions that are directionally Lipschitzian.
Connections with the concept of subdifferential regularity are also
established.
Keywords:subdifferential regularity, directional regularity, directionally Lipschitzian functions Categories:49J52, 58C20, 49J50, 90C26 
